Cellulosic biofuel

Cellulosic biofuel – one fuel option

Ethanol is traditionally made from food crops like corn and sugarcane, but it can also be made from cellulosic feedstocks, non-food crops or inedible waste products. Examples of sources for cellulosic biofuel are crop residues, Miscanthus, switch grass, paper pulp, packaging, cardboard, sawdust, wood chips, rice hulls, corn stover and the byproducts of lawn and tree maintenance.

Technically, almost all plants have the lingocelluloses needed to produce ethanol from cellulosic material. Once glucose is freed from the cellulose using enzymes, fermentation produces ethanol, similar to how ethanol is traditionally produced from 1st generation biofuel sources. Lignin is also produced in the process, which can be burned as a carbon-neutral fuel for local processing plants, businesses and perhaps even homes.

There are tons of cellulose containing raw materials that could be used to produce ethanol that are simply thrown away each year in the U.S. alone. Examples of this are over 100 million dry tons of urban wood wastes and forest residues and over 150 million dry tons of corn stover and wheat straw. That material plus just a fraction of the other paper, wood and plant products that could be used to create ethanol instead of garbage would be enough to make the U.S. independent of foreign oil. This theme is true in other parts of the world as well.

Financial concerns stop cellulosic biofuel from really taking off and providing a consistent source of fuel. This type of ethanol production involves an additional step, the breakdown of the raw material into glucose with enzymes, which translates into a higher cost. However, the raw material is abundant, and the reduction of greenhouse gas emissions from cellulosic biofuel can be up to 90% compared to fossil fuel petroleum, significantly greater than those obtained from traditional 1st generation biofuels. Cellulosic raw material can be easily grown in land marginal for actual agriculture or simply be diverted from landfills, in order to make the production of cellulosic biofuel more cost-effective. Cost-effective processes, such as using inexpensive enzymes to break down the cellulose, are being researched and developed as well.

From: http://www.greencitytimes.com

Leave a Reply

Your email address will not be published. Required fields are marked *