Tag Archives: desalination

world-water-day-polluted-drinking-water-a-serious-threat-to-public-health

6 ways to aid the world water crisis

How important is clean drinking and potable water for household use? 1/3 of the world’s population doesn’t have access to clean drinking water. The water used for cooking, cleaning and bathing must also be clean, as many diseases (especially in developing countries) are water-borne diseases, from bacteria or other microorganisms in unclean water (see: http://globalhydration.com/resources/waterbone-disease). In fact, over 10% of the world’s population doesn’t even have access to clean potable water. Meanwhile, over 70% of the earth is covered in water.

water nano-water filter

1(a). The most immediate way to help the world water crisis is to provide filters to people who lack clean water, primarily to the 3rd world and low-income people of the world. This takes relief funds, both established by governments and private charities. There are many promising and emerging water purification technologies such as LifeStraw. “LifeStraw technology was originally introduced in 2005 as an emergency response tool to filter water…” (http://lifestraw.com)

(more clean water technologies are described here)- http://www.cleverism.com/water-purification-new-technologies-change-world/

Established, available filter technologies also range from: activated charcoal (or other carbon-based materials) to new nanotechnologies which use materials such as graphene, silver and titanium which are made into microscopic filtration membranes. There are a variety of very promising uses of graphene in newly designed and developed filters -(https://agenda.weforum.org/2015/07/can-graphene-make-the-worlds-water-clean/).

More media on nanotechnologies (including graphene materials used in combination with other nanomaterials):

Another great example of the use of graphene in water filters and water systems comes from the company G2O: http://g2o.co/

“G2O’s graphene filter technology addressing a $2Bn market and reducing energy costs by up to 97%. In addition to use in filter technologies, this company sees applications for its graphene technology in:

  • Environmental maritime applications in aquaculture and oil & gas production
  • Drain water and waste water management
  • Desalination of seawater”

1(b). Develop more water treatment (storm water, river/ stream/ lake water, industrial use water, sewage) plants (http://www.waterworld.com/waste-water/treatment.html)

clean_waterdrop_Fotolia2. Improve and create new rainwater collection systems such as the ones found here: http://www.rainharvest.com/

3. Water reclamation:

desalination

4. Develop more desalination plants…(please check the desalination article on our website: desalination-clean-water-for-a-thirsty-world and also http://www.theguardian.com/technology/2015/may/27/desalination-quest-quench-worlds-thirst-water

5. Improve water infrastructure (reservoirs, aqueducts, piping networks…) and 6. Utilities (especially in 3rd world countries) to further develop the use of micro-payments via mobile/ smart phones (also great for solar electricity, in addition to water)

desalination

World water crisis solutions: desalination

Desalination

The two desalination plants featured in this article, one in San Diego, California, and one in Tel Aviv, Israel, represent the two largest of these plants in the world. Desalination represents a part of the solution to the world water crisis, along with wastewater treatment, and distributing water filters to the poor, especially in 3rd world areas. Worldwide, only 1 in 9 people have access to clean drinking water, Although Carlsbad and Tel Aviv don’t represent the struggles with water scarcity in the third world, they do represent solutions to the growing need for clean water in the world, as a whole. Both plants use a technology called reverse osmosis as part of the process.

http://www.citylab.com/tech/2015/12/a-look-inside-the-largest-desalination-plant-in-the-western-hemisphere/420501/

The largest ocean desalination plant in the Western Hemisphere is open in Carlsbad, San Diego, heralding what may be a new era in U.S. water use.

http://www.technologyreview.com/featuredstory/533446/desalination-out-of-desperation/

Global desalination output has tripled since 2000: 16,000 plants are up and running around the world, and the pace of construction is expected to increase while the technology continues to improve. Desalination is ripe for technological improvement. A combination of sensor-driven optimization and automation, energy-efficient technology that is said to nearly halve energy consumptionplus new types of membranes, could eventually allow for desalination plants that are half the size and use commensurately less energy. Among other benefits, small, mobile desalination units could be used in agricultural regions hundreds of miles away from the ocean, where demand for water is great and growing. Already, some 700 million people worldwide suffer from water scarcity, but that number is expected to swell to 1.8 billion in just 10 years. Some countries, like Israel, already rely heavily on desalination; more will follow suit.

http://www.technologyreview.com/featuredstory/534996/megascale-desalination/

10 miles south of Tel Aviv, Israel, a vast new industrial facility hums around the clock. It is the world’s largest (larger than the Carlsbad plant) modern seawater desalination plant, providing 20 percent of the water consumed by the country’s households. Thanks to a series of engineering and materials advances, however, it produces clean water from the sea cheaply and at a scale never before achieved, demonstrating that seawater desalination can cost-effectively provide a substantial portion of a nation’s water supply.