Tag Archives: IGCC

Gasification Applications Chart

Gasification – syngas from fossil fuels and environmentally friendly versions

The creation of syngas (or synthetic natural gas) is a technology based on coal gasification for the majority of plants, although it can also be based on biomass or other, fossil, fuels. Since it is also usually based on a nonrenewable fossil fuel, and usually involves the emission of greenhouse gasses like CO2, it can’t be described as a “green” technology. However, when coal gasification is used in conjunction with carbon capture and storage (CCS), or a green technology like integrated gasification combined cycle (IGCC), or when syngas is created using biomass, the technology is certainly “greener” than burning a fossil fuel. IGCC is a fairly new technology that uses a gasifier in converting coal and biomass into syngas, and has come to be known as “clean coal”. Syngas plants use coal gasification for the most part, but to make the production of syngas greener, use of IGCC or biomass must be implemented.

Lignite, a brownish type of coal, is most often used as a source in the process of creating syngas. Gasification uses the coal, steam and oxygen to create syngas — mostly hydrogen and carbon monoxide. The syngas can then be burned directly to create energy used to generate electricity or heat homes and businesses, convert the syngas into “substitute natural gas”, or can be used to create products including methanol, nitrogen-based fertilizers and hydrogen for oil refining and transportation fuels. Coal gasification is sometimes called “clean coal” because it can create energy with less harm to the environment than traditional fossil fuel use.

A significantly more environmentally friendly version of gasification, other than coal use, is available in biomass. Biomass gasification uses a feedstock as in agricultural residues (like wheat and straw), energy crops (like switchgrass), forestry residues and urban wood waste (for example, from construction sites).

The leading region in the world for syngas production is Asia/ Australia, in particular China. China mostly uses coal for its syngas production, relying on their vast coal deposits, thus still producing significant quantities of greenhouse gas emissions. China is trying to rely more on domestic sources for gas and less on importing liquefied natural gas. A significant number of gasification plants are found in India, South Korea, Taiwan and Singapore.

The Africa/ Middle East region also produces a significant quantity of syngas, more than Europe. However, production of syngas in Europe uses a wider selection of feedstocks, technologies and products than other regions. The coal-based units primarily utilize IGCC technologies. There are petroleum, natural gas and biomass plants that produce either power or chemicals. A fairly new plant in Swindon, England illustrates the advancements that European nations are making with gasification. Methanization is used to transform gasified biomass into grid-quality syngas, the biosynthetic natural gas then providing power to the grid.

Most syngas production in North America lies within the United States. These plants include: natural gas facilities that primarily produce chemicals, coal and petroleum plants that produce either power, chemicals and fertilizers or syngas, including a couple of IGCC plants. In Canada, gasification is used to produce hydrogen and power to upgrade synthetic crude oil from the tar sands.

From: http://www.greencitytimes.com