Categories
All Posts Climate Change Green City Times green city Sustainability News

5 categories of change in climate

What ARE the major changes in GLOBAL climate?


Earth, Horizon Earth, From Space, Climate ChangeClimate change is adversely affecting all parts of the earth. There have been dramatic increases in greenhouse gas emissions (GHGs) globally since the industrial revolution of the 19th century. The planet warms faster as more GHGs are added to the earth’s atmosphere.

The Intergovernmental Panel on Climate Change, expressing the global scientific consensus on the matter, warns that “global net human-caused emissions of carbon dioxide (CO2) need to fall by about 45% from 2010 levels by 2030, reaching ‘net zero’ around 2050. This means that any remaining emissions would need to be balanced by removing CO2 from the air…The decisions we make today are critical in ensuring a safe and sustainable world for everyone, both now and in the future.”

With GHGs (CO2, methane, nitrous oxide, other gases – see epa.gov/ghgemissions/overview-greenhouse-gases) continually added to the earth’s atmosphere, the planet continues to warm at an increasing rate. Unfortunately, much larger changes to the earth’s climate are projected despite the current pace of global climate change mitigation.

Thus, an increase in the pace of climate change mitigation (such as increased global investment in, and implementation of, clean and sustainable energy technologies) is imperative to slow the pace of climate change. In this article, the focus is on just a few (of many) categories of climate change, all of which represent significant adverse impacts to people and ecosystems.

Adverse climate feedback loops will lead to ‘tipping points‘ that might cause ‘runaway climate change‘. The way to avoid this scenario is for governments, industries, and the private sector throughout the world to increase investments exponentially in climate mitigation technologies.


Adverse Climate Feedback Loops

As the planet’s temperature rises, ocean temperature also rises in some regions globally, while simultaneously droughts and wildfires increase in other regions, and adverse climate feedback loops occur globally. For example, as the earth’s temperature and ocean temperature rise, there is also an increase in the size and frequency of intense storms and flooding. The increase in extreme storms leads again to an increase in the very factors that lead to more extreme wet weather in the first place (evidence of an increase in adverse climate feedback loops).

At the same time that extreme storms pummel some regions, global warming leads to extreme drought in other parts of the planet, and severe wildfires result. The larger wildfires and drought dry out land and make way for more adverse climate feedback loops (higher average temperatures, more extreme drought, more extreme wildfires, etc…). An increase in severe drought globally also has knock-on effects, such as devastation to agricultural food crops throughout entire regions of the planet.

From the United Nations Food and Agricultural Organization: “The percentage of the planet affected by drought has more than doubled in the last 40 years and in the same timespan droughts have affected more people worldwide than any other natural hazard. Climate change is indeed exacerbating drought in many parts of the world, increasing its frequency, severity and duration. Severe drought episodes have a dire impact on the socio-economic sector and the environment and can lead to massive famines and migration, natural resource degradation, and weak economic performance.”    FROM  –    fao.org/land-water/droughtandag


Atmospheric Changes/ Global Warming

Graphs of Global Warming Scenarios with More GHGs and with Less GHGs

Global warming presently is primarily due to human-caused GHGs from the combustion of fossil fuels. Essentially, rises in GHGs will continue to increase average global temperatures at a continuously higher rate.

The impacts and pace of global warming simultaneously accelerate adverse feedback loops, which have the effect of increasing the pace of global temperature rise.

Thus, the hope to reduce the consequences of climate change is tied to the successful global effort to reduce GHGs.

Consequences of global warming and related adverse climate feedback loops include increases in extreme weather events of all kinds, such as:

  • increased severity of hurricanes, typhoons, and cyclones
  • disruption of global weather patterns, such as jet stream disturbances that send colder weather further south (i.e. ‘polar vortex‘)
  • chaotic increases in rainfall and flooding in parts of the world, while simultaneously other parts of the world experience –
  • drought, heatwaves, wildfires, and devastation to agriculture 
  • increases in toxic algal blooms; especially in freshwater ecosystems such as lakes, but also in coastal marine habitats
  • extinction of wildlife species and ecosystems; degradation of wildlife habitats and biodiversity globally
  • ocean acidification

Read more about global warming here


Arctic Warming/ Sea Level Rise

Hundreds of billions of tons of melting glaciers and sea ice occur continuously year-round due to Arctic warming. The consequences of melting glaciers and sea ice have worldwide implications including rising ocean water levels. Icebergs and other smaller ice formations throughout the sea are melting due to global warming, in addition to glaciers in Greenland, and throughout the world and Arctic.

Sea level rise is already threatening some regions of the planet, especially during extreme high tide and flooding events, and especially for low-lying communities on coasts and islands. Melting ice of all sizes, and warming oceans, adversely affects the lives of marine wildlife species and ecosystems. Read more about the adverse effects on marine wildlife from global warming below.


Adverse Marine Changes

Changes to global ocean habitats are making life difficult for vast amounts of marine species. Fish and marine wildlife species’ diversity ranges and distribution are changing significantly due to global warming. These adverse effects on marine species correspond to climate changes to the planet; rising sea levels due to melting glaciers & polar ice melt, and composition changes in oceans such as increasing ocean acidification.

Ocean acidification has led to mass die-offs of coral reefs, home to a diverse set of marine species. Compounding adverse marine changes have affected coastal ecosystems, island-nations, and communities, causing them to face increasing exposure to storms, floods, as well as the aforementioned marine ecosystem issues. All of these factors have led once-thriving marine ecosystems and coastal communities to be in a state of distress, struggling for survival.


Increase in Wildfires

Wildfires are forecast to continue to increase in frequency, duration, and range. Increasing global temperatures will continue to increase the number and level of wildfires worldwide. The increasing number of wildfires will, in turn, cause a continued increase in global temperatures. This is a diabolical adverse feedback loop of increased atmospheric GHGs and adverse effects of global warming; a continuous cycle of global environmental devastation.

Despite the seemingly unusual high frequency of the raging wildfires that took place recently, it is alarming that there are many more large wildfires predicted over the coming couple of years. In California and Australia, as well as throughout the entire planet; warmer temperatures, drier land conditions, and extreme dry gusty wind are expected to expand the length and increase the intensity of wildfires.


Thawing Permafrost

Thawing permafrost will release large amounts of potent GHGs, such as methane, increasing global warming. Thawing ground (for example, in Siberia) is also likely to disrupt municipal building sectors and other infrastructure on a regional basis; for regions where human activity and permafrost are both present. The recent Arctic fires are an example of an adverse climate feedback loop; the fires set loose significantly high amounts of the potent GHG methane that had been locked in permafrost; increasing global warming and the potential for more severe Arctic fires.

GHGs continue to increase on a global basis, accelerating global warming. However, concerned people, countries, and cities, can help limit the effects of climate change, as seen in the cases of Green City Times’ featured sustainable cities.



Please also see:

GCT’s Plan to Reduce Greenhouse Gas Emissions

See Also: climate.nasa.gov/effects


Categories
Energy Efficiency GCT featured articles Renewable Energy

Sustainable Energy Infrastructure

Clean Energy Transition – GREEN Infrastructure


Updating Infrastructure for Developing Renewable Energy in Cities

People-centered smart cities are cropping up worldwide. They only account for 2% of the world’s landmass but are home to most of its population, energy use, and economic activity. 

Cities are adopting modern clean energy technologies to become smarter, and one crucial aspect is renewable energy. Renewables can empower smart cities and help them reach goals they set for themselves. Citizens and the city benefit (as well as the planet’s climate and environment) from using green energy, such as wind and solar, as well as from the multitude of recent sustainable technology innovations currently available.

It’s no secret that relying on fossil fuels is unsustainable — that’s why almost 200 of the world’s countries have joined the Paris Accord intending to limit global warming and reduce greenhouse gas emissions (GHGs). 

Here’s how infrastructure will play a crucial role in developing renewable energy in cities, and hopefully in securing the planet’s future –


U.S. Government Aid in the Shift to Renewable Energy

As cities become larger and smarter, the amount of energy they use increases. As a result, governments are stepping in to provide incentives and funding to municipalities looking to shift to renewable energy. Cities are making a shift to all forms of clean energy technology in multiple economic sectors – energy, buildings, transportation, water, etc… – all types of infrastructure.

For example, President Biden’s sustainable infrastructure and social spending plan – the Build Back Better (BBB) plan – originally included $174 billion in spending to focus on the electric vehicle (EV) market, yet another clean energy sector experiencing rapid growth. [The bill actually passed by Congress in 2021 contained a small portion of this funding – see below].

The BBB plan also originally included tax credits to consumers for purchases of EVs, investment in electric school buses, investment in EV charging infrastructure, investment to retool factories and boost the domestic supply of EVs, and more… Additionally, the original BBB plan proposed $100 billion to modernize the country’s electric grid and modernize energy infrastructure across the country.

If the U.S. signs even a scaled-down version of the BBB into law, it would be considered one of the largest federal efforts to curb GHGs. 

However, the BBB plan is ambitious and represents challenging legislation to advance. A small slice of the BBB (roughly 15-20% of the original BBB plan) passed through Congress and was signed by President Biden (in November 2021). This legislation – the bipartisan Infrastructure Investment and Jobs Act (IIJA) does include funding for modern infrastructure needs. Although at a much lower funding level than the original BBB proposed, the IIJA invests $550 billion in new spending over five years to bolster the nation’s infrastructure, public mass transit, broadband, water, energy, environmental concerns, EV charging infrastructure, and electric & low-emission school buses.

The IIJA also includes investments in the modernization of U.S. energy grids, clean energy technologies, clean energy infrastructure, and hundreds of billions in additional investments in sustainability this decade. See this link for a full list of IIJA’s investment priorities in transportation infrastructure, water infrastructure, broadband, energy, and environmental concerns). 


Cities worldwide do have some government support in their transition to renewable energy in some cases. In fact, globally, more than 1 billion people live in areas with renewable energy targets or policies. However, there also needs to be more private investment to help build sustainable infrastructure. 


How Cities Can Assess Energy Demand

Cities must first address their current energy usage before implementing renewable power to improve their infrastructure. 

The Office of Energy Efficiency and Renewable Energy (EERE) has many online tools that local and state governments can leverage to better understand their energy consumption. For example, cities can access data that breaks down power usage by:

  • GHGs
  • Electricity and natural gas consumption/expenditures
  • Residential and commercial building stock
  • Fuel consumption, vehicle miles traveled, and registration by fuel type
  • Renewable energy procurement options

The data plays a significant role in helping cities determine their energy usage and shows what areas of consumption need to be reduced. This will lead to government agencies making more strategic decisions regarding renewable implementation. 

Once cities understand their energy usage and the benefits of renewables, they can then focus on planning implementation to make infrastructure more efficient, sustainable, and reliable. 


Updating Crucial Infrastructure Components

What are the crucial components of infrastructure that need to be updated to achieve higher levels of sustainability? Not all of the priority investments of the IIJA are in clean energy infrastructure – for example, large investments in the IIJA are dedicated to repairing roads and bridges (conventional infrastructure). However, the IIJA also invests $7.5 billion for EV charging infrastructure, $2.5 billion for electric school buses, and $2.5 billion for low-emission school buses.

Here is a brief list of just a few vital infrastructure items (some of which are investments in the IIJA law, some of which are in the original BBB plan, as well as a couple of novel ideas for sustainable investment) –

Electric Grid

In the next few years, cities will have to update the power grid to prepare for a net-zero future. Strengthening and modernizing the electric grid means cities will face fewer disruptions. Increasing resiliency has to be a top priority for cities across the country. 

Here are some of the ways the electric grid can improve over time and with proper funding:

  • Employing microgrids to strengthen resilience
  • Recording demand response from grid customers
  • Enacting smart metering
  • Updating grid hardware
  • Using grid energy storage devices

Water Systems

Water and power are intimately connected, but what role does water play in power generation? It generates energy because it’s used by thermoelectric power plants and refining and processing fossil fuels. Plants and refineries use large quantities of water to operate. For this reason, and for the benefit of public health, sustainable purification systems can help lessen these large water footprints.

Cities will have to invest in efficient water infrastructure to reach sustainability initiatives throughout all socioeconomic sectors, so that all of society benefits.

(Novel sustainable energy infrastructure ideas for -) Highways

State and local highway departments have many responsibilities, from plowing roads during snowstorms to taking on major repairs or replacement projects. A significant amount of electricity is needed to power them efficiently. Think about the roadway signs, lights, rest stops, and maintenance buildings. All these factors increase energy consumption. 

Some state departments of transportation (DOTs) have implemented solar in highway rights-of-way (ROW) to offset electricity costs and consumption. Additionally, the Federal Highway Administration has supported the move for state agencies to adopt renewable energy to power highways. Improving roadways will be crucial when developing renewable energy in cities.


Moving Toward a Sustainable Future

Cities must carefully plan the implementation of renewable energy sources to be more sustainable. The most important factor to consider is updating infrastructure. 

Cities, states, and federal government agencies must work together to update the various aspects of infrastructure that will make cities more sustainable. It will certainly be interesting to see how municipalities use their resources to transition to renewables to sustain current and future demands.



Article by Jane Marsh

Author bio:

Jane works as an environmental and energy writer. She is also the founder and editor-in-chief of

Environment.co



 

Categories
All Posts Climate Change Green City Times green city Net Zero Sustainability News

Nuclear – necessary energy

Clean Energy


Both nuclear and renewable energy are needed in the global energy mix to help fight climate change

In order to cut down on the share of fossil fuels in the world energy mix, nuclear is necessary. A total of WELL OVER 40% of the world’s energy mix for renewable and nuclear energies combined is needed to reach significant greenhouse gas emission reduction targets. Over 40% is not a final goal, but represents a realistic initial goal on the path towards the target of over 70% clean, zero-emission global energy generation.

To achieve a significant GHG emissions reduction target for the planet, the world needs nuclear energy. Nuclear energy is going to have to augment truly environmentally-friendly, renewable energy in the effort to dramatically reduce fossil fuel use.


How much of the world’s energy is nuclear?

Nuclear reactors provided 10% of the world’s total energy sources, on average annually, during the last decade. 13 countries get at least 1/4 of their energy from nuclear, including France (which gets around 3/4 from nuclear), Belgium, Sweden, Switzerland, and Finland.

Nuclear energy is also put to great use in the US, France, China, Russia, and South Korea, among other countries. Now is probably as good of a time as any in this article to mention a couple of major drawbacks (to put it mildly) of nuclear energy.

Namely the danger- catastrophic disasters due to large-scale accidents like the one at Fukushima, Japan, enrichment of uranium in order to create nuclear weapons, and the difficult, expensive process of securely managing the disposal of nuclear waste.

The former major problems mentioned (and less waste generated by the nuclear process – Gen IV theoretically can just run on spent uranium) are resolved in the 4th generation nuclear reactor designs, discussed below.

Current reactors, mostly Gen I & II nuclear plants, along with several operational Gen III plants, rely on uranium and water (to cool the plants). Therefore, these nuclear plants still deplete water supplies, create nuclear waste, use a fuel source that can be enriched to convert the material into a bomb, and represent a source of potential danger.

The largest nuclear disaster in history was the Chernobyl disaster (although the risk of nuclear disaster is dramatically minimized in a Gen III plant, and eliminated in Gen IV nuclear. Some Gen IV designs dramatically cut the need for water to cool plants, as well).

Here’s a brief snippet from the World Nuclear Association summarizing nuclear energy’s current role in the global energy mix:

  • The first commercial nuclear power stations started operation in the 1950s.
  • Nuclear energy now provides about 10% of the world’s electricity from about 440 power reactors.
  • Nuclear is the world’s second largest source of low-carbon power (29% of the total in 2018). 
  • Over 50 countries utilise nuclear energy in about 220 research reactors. In addition to research, these reactors are used for the production of medical and industrial isotopes, as well as for training.  FROM  –  https://www.world-nuclear.org/information-library/current-and-future-generation/nuclear-power-in-the-world-today.aspx

Advanced nuclear reactors

Safer, cheaper, still energy abundant and emissions-free designs that use relatively benign energy sources (thorium or depleted uranium), and much less water for cooling the reactor than previous designs and current operational nuclear plants, are being envisioned in 4th generation nuclear, and are currently available in a few 3rd generation nuclear power plant designs.

Using a small fraction of the water as previous designs, Gen IV nuclear plant designs, are safe, cost-effective, environmentally friendly, and still offer tremendous potential for energy production. Molten salt reactors using depleted uranium, nuclear waste from other plants, or thorium as a complete replacement of uranium, are being planned in Gen IV nuclear plant designs. 4th generation designs (and many 3rd generation plants, both planned and operational) are autonomous, smart plants, with heightened safety measures.

Thorium is being looked at as a fuel source for new nuclear reactors, as it is abundant, much less radioactive than uranium, and creates by-products from burning the fuel source that can be used again in the reactor. There is a higher level of thorium than uranium on the planet.

Thorium, as well as depleted uranium, are being designed with relatively lower up-front capital costs. Little manpower is needed to run and maintain future, advanced 4th generation nuclear plants, due to the autonomous computer technology set to be deployed in the plants.


Summation of the benefits of advanced nuclear reactors

Nuclear reactors designed to run on thorium, and depleted uranium, have a very low chance of being used to develop nuclear weapons, produce less radioactive waste, are abundant fuel sources; and are safer, more cost-efficient in addition to being energy-efficient, and cleaner vis-a-vis energy generation compared to current widely deployed nuclear reactors.

Thorium, in particular, is being looked at by developing nations like China and India because of the relatively low cost, increased safety, an abundance of the material, and tremendous energy potential of this energy source. The U.S. has huge amounts of thorium, in places like Kentucky and Idaho (as well as depleted uranium); and there are large quantities in countries like India, Australia, and Brazil.

The U.S., Europe, and even some of the aforementioned developing countries, also have large stockpiles of depleted uranium. More depleted uranium is being produced every day, which would work in many of the 4th generation designs. A few 3rd generation nuclear plants are already operating, and some more are projected to be developed and ready for operation by 2025. 4th Gen nuclear promises to produce abundant, low-cost energy safely, and with little environmental impact.

In order to meet increased demand for low-emission, safer, lower up-front capital investment, high-efficiency energy sources, there has also been an increased global interest in light water small modular nuclear reactors (SMRs). Benefits of nuclear SMRs include-

Small modular reactors offer a lower initial capital investment, greater scalability, and siting flexibility for locations unable to accommodate more traditional larger reactors.  They also have the potential for enhanced safety and security compared to earlier designs. Deployment of advanced SMRs can help drive economic growth. From- USDOE Office of Nuclear Energy

One other “good” thing about nuclear energy production is that there are fairly low marginal costs. There are little to no negative externalities with regard to the actual energy production (i.e. little to no GHG emissions); however current nuclear power plants do generate toxic waste. Ongoing costs are fuel and maintenance of nuclear plants; the uranium to fuel the plants, and water to cool the plants, and toxic waste disposal facilities.

Large toxic waste disposal locations are necessary to bury the radioactive waste so people aren’t exposed to potentially cancer-causing radiation. Nuclear power plants do also carry high up-front capital costs.

The US Energy Information Administration estimated that for new nuclear plants in 2019 capital costs will make up 75% of the levelized cost of energy.

Even when looking at the downsides of current technologies for nuclear energy production, 4th generation nuclear promises to be safe, cost-efficient (cost of new nuclear fuel is low), and environmentally friendly, with a very high energy production capacity given a relatively small quantity of nuclear fuel need for energy production (whenever 4th-gen nuclear gets built).

New reactors can (theoretically) run on spent uranium and even thorium. 4th generation nuclear has entirely safe, cost-efficient designs. Actually, the levelized cost of energy production from new, advanced nuclear reactors that are already available, deployed, and generating nuclear energy, is looking viable.



For a comprehensive guide on public policy that increases nuclear energy globally, in order to help fight anthropogenic climate change, please see: Public policy proposal to stabilize greenhouse gas emissions


Please also see:

Renewable energy overview

 


Categories
All Posts Climate Change Green City Times green city Net Zero Sustainability News

Regenerative Agriculture

Regenerative GREEN Land-Use


The United Nations (UN) has advised that a global shift towards plant-based food will counteract the worst effects of climate change. Is going vegan really going to help in global climate action, and help the world meet net zero emissions targets?

Well, actually…the UN says that land-use practices that favor plant growth vs. a focus on animal grazing, as well as sustainable and regenerative agriculture practices, are among top climate change mitigation solutions. Regenerative agriculture creates environmentally-friendly carbon sinks; turning farms into thriving ecosystems that sequester atmospheric carbon, while also producing crops for food.  



Sustainable and regenerative agriculture

The UN’s International Panel on Climate Change (IPCC) came out with a report in August 2019, about how the global community must switch now to sustainable land use in food production. All countries and farm industries globally must adopt sustainable agriculture practices, as the world begins transitioning to more sustainable food consumption habits.

Effective global climate action depends on sustainable land-use practices as the foundation for successful action.


For more information about sustainable agriculture practices, permaculture, and reforestation, please see>>>

Sustainable agriculture

Reforestation

[A quick note about the terms in this article; all regenerative agriculture is sustainable agriculture, but not all sustainable agriculture techniques and practices are considered the same as specific practices of regenerative agriculture]


What exactly is regenerative agriculture?

A major component of regenerative agriculture is a focus on proper soil nutrition. Crop rotation of a variety of perennial crops, and no-till farming, for example, are designed to increase soil health. Conventional animal grazing is a much less sustainable land-use practice and has almost no considerations for proper soil health, versus farmland used for regenerative agriculture.

Sustainable agriculture doesn’t necessarily mean that absolutely no animals are raised on farms for food (as an immediate global dietary shift seems to be highly unlikely).

Rather, sustainable land-use simply means that farms focus on “well-managed grazing practices [that] stimulate improved plant growth, and increased soil [health]“. However, the primary focus of regenerative agriculture remains diverse food crops, and land use dedicated to plant growth, biodiversity, and healthy ecosystems.


Regenerative agriculture focuses on farming done with the implementation of specific sustainable farming methods. Here are some key points in defining regenerative agriculture>>>

Strict regenerative agricultural practices include:

no-tillage

diverse cover crops

in-farm fertility (no external nutrients)

no pesticides or synthetic fertilizers

multiple crop rotations

polyculture

organic soil fertility


Cover crops, no-till or low-till farming, crop rotation, organic soil fertility, and polyculture (vs. monoculture) – are a few sustainable agriculture practices that increase soil health. Cover crops refer to a variety of crops grown on farmland during off-seasons in order to maintain soil health.

Polyculture is also a practice of introducing and maintaining multiple species of crops and plants on farmland. Polyculture involves the consistent year-round farming practice of creating diverse crop and farmland plant species.

Biodiversity of a farm’s crops and other ecosystems on the farm improve soil health, deter pests, and help to maintain healthy ecosystems.


Carbon farming and cover crops to improve soil health

Sustainable farms enhance environmental quality and agricultural economy through the enhancement of natural resources. For example, carbon farming is a sustainable agriculture practice that maintains healthy soils and is common practice in most organic farming.

Practices to maintain soil health are found in regenerative agriculture, as well as in permaculture. A sustainable farm must focus a substantial amount of time year-round on healthy soil nutrition to help maintain long-term soil quality.

the cover crop buckwheat shown juxtaposed to the same land without cover crops

One solution to help create more sustainable farms is for governments to simply subsidize farmers to implement sustainable farming practices.

Governments should consider legislating agricultural subsidies through increasing financial incentives, tax breaks, or direct payments, for farmers that practice sustainable ag. techniques; with the easiest practice to implement being cover cropping.

These financial incentives would be for farmers to adopt sustainable agriculture practices such as carbon farming and implementation of cover crops during off-seasons. Some governments worldwide already have legislation to support farmers that use sustainable agriculture practices, but more is needed.

After all, farmers that adopt sustainable agriculture practices are helping reduce global GHGs and fight climate change. Sustainable farms are carbon sinks; sequestering carbon and transforming conventional farmland into thriving, climate-saving, ecosystems.

Typically after farmland crops are harvested, and especially during wintertime, farmland just lays fallow. A few months later, when it’s time to sow seeds for a new harvest – weeds, pests, and unhealthy soil fill the land. Tillage, and synthetic pesticides and fertilizers only make the problem worse. The simple remedy for this problem is cover cropping. Cover crops keep weeds and pests at bay, and maintain soil health during the off-season.

Solutions, in order to encourage farmers to implement the widespread use of cover cropping, include: providing government subsidies to farmers that practice cover cropping, proving guaranteed investment of markets for the crops, or at least making sure farmers get detailed information about cover crops.

Cover crops not only maintain farmland health but provide a source of potential income, providing useful crops to the community. Examples of cover crops include buckwheat, alfalfa, annual cereals (rye, wheat, barley, oats), clovers, winter peas, cowpeas, turnips, radish, forage grasses such as ryegrass, and warm-season grasses such as sorghum-sudan grass.

Here’s a brief snippet from an article by The Union of Concerned Scientists on sustainable agriculture:

Environmental sustainability in agriculture means good stewardship of the natural systems and resources that farms rely on. Among other things, this involves:

  • building and maintaining healthy soil with low till or no till farming
  • crop rotation
  • use of cover crops during off-seasons
  • polyculture vs. monoculture
  • managing water wisely
  • minimizing air, water, and climate pollution
  • promoting biodiversity

There’s a whole field of research devoted to achieving these goals: agroecology, the science of managing farms as ecosystems. By working with nature rather than against it, farms managed using agroecological principles can avoid damaging impacts without sacrificing productivity or profitability.”     FROM  –    ucsusa.org/what-sustainable-agriculture


Land-use solutions; how to reduce GHGs from agriculture

The Food and Agriculture Organization of the UN believes that raising animals for food is “one of the top two or three most significant contributors to the most serious environmental problems, at every scale from local to global.” This problem is largely due to deforestation to clear land; a significant amount of which is either directly or indirectly for the global meat industry. Another major contributor to the problem is land-use designated for grazing. Land used for grazing is responsible for more greenhouse gas emissions (GHGs) than all of the world’s transport systems combined.

The world should stop the unsustainable practice of deforestation, but an immediate global climate solution is simply improving practices on existing farms. A realistic solution is for the global agriculture community to be encouraged to maintain focused efforts on regenerative farming practices.

The global transition to sustainable agriculture would be expedited if the global farming community was simply catering to a majority organic plant-based diet in the consumer food market. However, this ideal sustainable circumstance is far from realistic.

One solution that will remain politically unpopular for obvious reasons (as the vast majority of the world’s population have meat and dairy-intensive diets) – is a carbon tax on meat. It takes on average 11 times more fossil fuels to produce a calorie of animal protein than to produce a calorie of grain protein. That’s a considerable amount of GHGs released per calorie.

So much so that Chatham House, otherwise known as The Royal Institute of International Affairs, has called for a carbon tax on meat to help combat climate change. In fact, globally, raising cows for food ranks only behind the United States and China as a GHG contributing segment of the global economy. Raising cattle for food is the #1 source of GHGs from agriculture globally.

Going vegan, vegetarian, or at least eating less meat, helps reduce global GHGs by helping in the global transition to sustainable, plant-based agriculture. It helps fill the demand for a plant-based consumer diet as the global fight against climate change gains steam. It also helps to reduce your carbon footprint.


Meat & GHGs

An Oxford study published in the journal Climate Change found that the diets of meat-eaters who ate more than 3.5 ounces of meat a day – roughly the size of a pack of cards – contribute to GHGs significantly. These heavy meat eaters generate 15.8 pounds of carbon dioxide equivalent each day; compared to vegetarians – 8.4 pounds, and vegans – 6.4 pounds. This is because the process of raising livestock for food on farms itself is carbon-intensive. Also, the majority of global deforestation is just to create land for cattle to graze.

The average meat-eater has a much higher carbon footprint than people who adopt a plant-based diet – 50-54% higher than vegetarians, and between 99-102% higher than vegans. Of course, there are other ways for individuals in society to contribute to lower emissions, but veganism may be a top solution. Research shows that, as Dr. Fredrik Hedenus of Chalmers University of Technology in Sweden said, “reducing meat and dairy consumption is key to bringing agricultural pollution down to safe levels.” 

Raising cattle for meat and dairy ranks close to the top of the list as a segment of the global economy contributing to GHGs (mostly in the form of methane emitted from grazing cattle). There are a variety of innovative ways to reduce methane emissions from grazing cattle.

However, transitioning to a plant-based diet now is considered one of the best ways to adopt a more sustainable lifestyle, and to reduce one’s personal contribution to the problem of GHGs. A study from the University of Chicago posits that eating less meat (or none at all) is more effective at reducing one’s personal responsibility for GHGs than changing from a conventional car to a hybrid.  

According to PETA – “…the U.S. Environmental Protection Agency has shown that animal agriculture is globally the single largest source of methane emissions and that, pound for pound, methane is more than 28 times more effective than carbon dioxide at trapping heat in our atmosphere. The use of manure storage and of manure being used as fertilizer for crops and feed, which then generates substantial amounts of nitrous oxide, contributes greatly to the greenhouse gases affecting the global warming crisis.”

According to the UN Food and Agriculture Organization, livestock accounts for 14.5% of global greenhouse gas emissions. The three most critical GHGs responsible for climate change are carbon dioxide, methane, and nitrous oxide – and together they cause the majority of climate change issues.

Methane is a gas that can be produced from stockpiling of animal and human sewage, manure used as fertilizer, as well animal’s personal “gas emissions [for ex. cow burps and farts]”.  Methane is a potent GHG released from livestock in dangerous quantities exacerbating climate change, and is closely followed in significance by nitrous oxide in unsustainable agriculture practices.

Nitrous oxide is roughly 300 times more potent a greenhouse gas than carbon dioxide, and methane is roughly 40 times more potent than CO2. CO2 is the most well-known GHG because it’s the longest-lasting, and most significant GHG in terms of quantity of CO2 released in the common industries tracked for GHG emissions (energy generation, manufacturing, transportation, agriculture, buildings).

Agriculture is the largest man-made source of nitrous oxide, with meat, dairy, and other animal-based food industries – contributing to 65% of worldwide nitrous oxide emissions. Nitrous oxide emissions are primarily direct emissions from fertilized agricultural stock, and manure, as well as indirect emissions from leaching of fertilizers and pesticides; which is when rainwater causes part of the nitrogen in fertilizers and pesticides to leach into groundwater and eventually into rivers. 

In basic terms, societies should begin to try and transition from a meat-based diet to a plant-based diet today; and the global farming community absolutely must switch now to sustainable agriculture practices, in order for the global fight against climate change to be truly effective.

Food consumption habits greatly affect land-use/ agricultural practices. Project Drawdown ranks having the global community transition to a plant-based diet as one of the most effective climate mitigation strategies, albeit one that has gained very little global momentum (as eating meat and dairy remains very popular worldwide).

For reference, around 3% of the population in the United States is vegetarian or vegan, and the agriculture sector is responsible for 9% of GHGs from the United States. The U.K. is a lot better than the U.S. as far as the vegetarian portion of the population, with estimates that as much as a quarter of the population of the United Kingdom will be vegetarian by 2025

Dietary consumer choices directly influence land use and agriculture. One solution to the global climate crisis is to focus on changing cultural dietary choices and, in turn, help foster the transition to sustainable global land-use/ agriculture practices to effectively fight climate change.

Project Drawdown estimates that transitioning the global agriculture systems to sustainable practices can reduce global CO2 emissions by over 20 gigatons, stating that “bringing that carbon back home through regenerative agriculture is one of the greatest opportunities to address human and climate health, along with the financial well-being of farmers.”

Additionally, Project Drawdown ranks implementing sustainable agriculture practices, such as regenerative annual cropping, and transitioning the global community to sustainable land use turning farmland into land sinks, as top solutions in their list of most effective ways to fight climate change. Project Drawdown also ranks managed grazing as a top climate solution; offering the following key points-

Managed grazing imitates herbivores, addressing two key variables: how long livestock grazes a specific area and how long the land rests before animals return. There are three managed-grazing techniques that improve soil health, carbon sequestration, water retention, and forage productivity:

  1. Improved continuous grazing adjusts standard grazing practices and decreases the number of animals per acre.
  2. Rotational grazing moves livestock to fresh paddocks or pastures, allowing those already grazed to recover.
  3. Adaptive multi-paddock grazing shifts animals through smaller paddocks in quick succession, after which the land is given time to recover.

FROM – https://drawdown.org/solutions/managed-grazing

And here’s a snippet from World Resources Institute on governments subsidizing sustainable agriculture for farmers willing to adopt practices that actively sequester carbon on farmland (through carbon farming, cover crops, and/ or another sustainable farming practice discussed above) –

“To both feed the world and solve climate change, the world needs to produce 50% more food in 2050 compared to 2010 while reducing greenhouse gas emissions by two-thirds. While government funding has an important role to play, a new World Bank report found that agricultural subsidies are currently doing little to achieve these goals, but have great potential for reform.

What is needed to mitigate the 25% of the world’s greenhouse gas emissions contributed by global agriculture, including emissions from land use change? The good news is that many opportunities exist to boost agricultural productivity to provide more food on existing agricultural land while reducing emissions.

Opportunity one is to increase natural resource efficiency by producing more food per hectare, per animal and per kilogram of fertilizer and other chemicals used. Opportunity two is to put in place measures to link these productivity gains to protection of forests and other native habitats. Opportunity three is to pursue innovations, because reaching climate goals for agriculture — just like for energy use — requires new technologies and approaches.

Overall, governments around the world should redirect more agricultural funding to focus on mitigation and the synergies between reducing emissions and producing more food. A first step toward a sustainable food future is to make better use of the large financial support governments are already providing.”   FROM – wri.org/redirecting-agricultural-subsidies-sustainable-food-future



Categories
All Posts Climate Change Green City Times green city Net Zero Sustainability News

Permanent ban on new coal mines and other sustainability priorities

Climate Priority Pathways & Policies |


Strategies for mitigating climate change

What are the best strategies for mitigating global warming? How is the United States going to reach net zero greenhouse gas emissions? Carbon pricing? The Green New Deal? Here’s a brief list of sustainability priorities that the United States should implement in order to avoid contributing to the most catastrophic consequences of anthropogenic climate change:


Priority Climate Actions for the US government

The United States federal government under Biden; all relevant Climate, Energy, and Environment executive administrative agencies must implement the following priorities. Also, ideally Congress and/ or state legislatures & governors must focus on priorities outlined in GCT’s Climate Public Policies article.   


Regulations

  • The EPA under Biden needs to work on ensuring environmental regulations are put back in place; including air, water, and land pollution and GHGs regulatory rollbacks, now that the Trump administration is gone. “Most of these [environmental protection] rollbacks can be reversed by the Biden administration, but it will take some concerted effort. [Berkeley Law] has compiled nearly 200 rollbacks, listed here“.   FROM  –  law.berkeley.edu/research/clee/reversing-environmental-rollbacks
  • A permanent moratorium on new coal plants legislated and mandated by the U.S. federal government, or at least by a majority of U.S. states. Pursue a just transition for coal country (e.g. retraining coal miners, other coal industry employees, in clean energy jobs. Just transition assistance with clean energy job placement; financial assistance to coal communities as local coal industry-dependent economies transition to clean energy economies). Existing coal mines are phased out completely by 2040 at the latest during the energy transition to clean energy in the U.S.
  • Permanent ban on all drilling for oil & gas in the Arctic National Wildlife Refuge (ANWR). Moratorium on all mining in ANWR & in all public lands and waters of the United States. Ban on oil & gas drilling on federal lands & waters in the U.S. (Biden has effectively done most of the current moratoriums on drilling/ mining on federal lands/ waters with executive actions – now these bans must be made permanent with legislation through Congress).
  • Ban all Canadian tar sands oil imports and close tar sands oil pipelines – so that means ban all trains and pipelines that transport tar sands oil from Canada to the U.S., and stop the development of the Keystone XL pipeline – which Biden now has issued an executive order to do. The development of the Dakota Access pipeline should have effectively been stopped by the order of a federal judge in 2020. However, the case is still being bandied about the courts, pending ‘environmental review’, among other legal issues. Biden and Congress could shut the Dakota Access pipeline down, along with ensuring similar dirty tar sand oil pipelines are shut-down; especially the Line 3 pipeline.

Paris; UN Sustainability Goals; Climate & Land-use Targets

  • Rejoin the international community on climate. The United States must make good on commitments made at the 2015 Paris Climate Accord before trying to put into U.S. law (through Congress) parts of new policies like sections of the Green New Deal (GND). This is true for even less dramatic policies than the GND, like the various federal carbon pricing proposals circulating Congress. Now that the Biden administration has rejoined Paris, the U.S. must try and achieve the more ambitious Carbon Neutrality Coalition (CNC) goal of carbon neutrality by 2050, and join the CNC. Even if any part of The Green New Deal does get passed by Congress and signed into law by Biden, the U.S. must still try to achieve goals set at the Paris Climate Accord. The U.S. must maintain its commitments to vital measures; such as ambitious GHG reduction goals.
  • The U.S. will try to pull its own weight on climate, energy, the environment, and other sustainability goals.
  • The sustainability and clean energy measures listed above in this article should be implemented by the U.S. government; even if the efforts fall short of the ambitious climate, energy, environment, and social justice targets outlined in The Green New Deal. It is recommended that the US federal government, or just individual states, consider passing carbon pricing legislation; similar to California’s emissions trading system (ETS); or an ETS similar to the one conducted by 10 Northeastern states (11 with Virginia joining in 2021) – the Regional Greenhouse Gas Initiative (RGGI).   
  • The United States must ensure (through the EPA); or ideally pass legislation through Congress – setting GHG reduction, decarbonization targets for the U.S. in order to meet all ambitious goals to meet the climate targets set by the United States at the Paris Climate Accord. Biden has pledged to decarbonize the energy generation sector (for electricity generation) by 2035, and to achieve net zero emissions (carbon neutrality targets) by 2050 – these represent significantly ambitious climate targets.
  • All regulations for fossil fuel developments that were mandated under President Obama’s Clean Power Plan (CPP), which mirror GHG reduction targets initially set at the 2015 Paris Climate Accord must be enforced at a minimum. Based on the new, more ambitious direction of the international community on climate change mitigation; even more ambitious targets than were originally set up by Obama’s CPP should be new targets for the Biden administration. Greenhouse gas emissions from U.S. power plants will need to meet the most ambitious standards set by the Paris Climate Accord; and continue to evolve with new guidance from the Intergovernmental Panel on Climate Change (IPCC) – and which now are GHG reduction targets aligned with carbon neutrality by 2050.
  • Expand, protect, restore, and maintain U.S. protected public wilderness, parks, nature reserves, natural monuments, and all U.S. public lands.
  • Tax incentives/ direct government subsidies for sustainable agriculture (encourage farms to adopt practices such as cover crops, agroforestry, other common sustainable agriculture practices.


There were a few significant events which showed strong signs of global progress, with the United States as an occasional global leader on climate action; in terms of addressing anthropogenic climate change in 2014-2015, leading to the Paris Climate Accord:

  1. the Pope’s Encyclical on Climate Change
  2. Obama’s CPP
  3. Paris Climate Accord

These events represented true progress. We must get back to this momentum.

The new climate envoy and related staff, John Kerry and his staff, for the new executive climate department of the U.S. government; and the new Biden Administration picks for EPA, Energy, Interior, and other climate related cabinet positions – should get the U.S. back on track as far as ambitious climate policies based on the latest Intergovernmental Panel on Climate Change guidance. The COP26 in Glasgow should provide a beacon of hope for the global clean energy transition.

On day one of his presidency, Biden rejoined the Paris climate accord, and canceled further U.S. development of the Keystone pipeline, as well as discontinuing any further U.S. investment in the Keystone pipeline (stopping any use of the pipeline for Canadian tar sands oil). Now Biden and Congress just need to tackle the above priorities (including stopping at least 2 more major Canadian tar sands oil pipelines). Relevant parts of the Biden administration (EPA, the new Climate executive department, Energy, Interior) need to start issuing incremental policies (such as those listed above) to address sustainable climate solutions to meet new IPCC guidance. Public policies that are recommended for the United States to pursue as far as climate, energy, and the environment, please see: GCT’s CLIMATE PUBLIC POLICIES article.


The United States federal government (through Congress), or individual states (through state legislatures), should at least consider passing legislation from the various carbon pricing proposals circulating Congress. Please see: GCT’s EU and US climate progress, carbon pricing, and carbon tax articles; for more insight on the range of carbon pricing legislation measures proposed and in effect globally.


Big Oil (and gas) and Big Coal, in the United States as in much of the rest of the world, finance the campaigns of many politicians and have successfully been able to slow down progress on some major climate goals. How much of the Clean Power Plan had the Trump administration, Congressional Republicans, and the EPA under Trump been able to stop?  The EPA under the Trump administration had been able to stop or reverse the ambitious goals of the CPP and Paris Climate Accord in some, Republican-controlled, states.

However, many states and cities in the United States have stayed on track to meet the initial requirements of the Clean Power Plan and the Paris Climate Accord; as individual states (like California, many states in the Northeast, several other states) have remained committed to the ambitious climate goals of the CPP and Paris Climate Accord; and remain committed to achieving the latest climate targets set by the IPCC. Please see: greencitytimes.blogspot.com/elements-of-clean-power-plan-still-move and: greencitytimes.blogspot.com/was-clean-power-plan-just-wiped-out.


Some U.S. states have even more ambitious strategies to reduce GHGs and fight climate change than put forth in the CPP, or at Paris in 2015; closer to the carbon neutrality targets set by the latest IPCC guidance.

Examples of states with ambitious climate mitigation plans include: states like California, Hawaii, Washington, New Mexico, as well as several states in the Northeast U.S., a few other states (all are states which have passed bills through their states’ legislatures that mandate 100% renewable energy within the next 3 decades for their entire state; or at least 100% clean energy ). New York City is even planning a congestion levy for cars in the city center of NYC); and is investing substantial support for electric vehicles – like the development of extensive EV charging stations, as well as other EV infrastructure.


Carbon pricing, fiscal incentives for clean energy technologies, and incentives for clean energy job growth are among public policies that would benefit the environmental health of the planet by increasing investment in clean and renewable energy; helping in the fight against climate change by reducing GHGs from energy production.

Policies supporting clean energy job growth would also help the economy. Here is an article by Green City Times – a guide to needed public policies for environmental (as well as economic) sustainability, including our complete take on the Green New Deal – greencitytimes.com/stabilize-greenhouse-gas-emissions-2



Categories
All Posts Green City Times green city Sustainability News

10 Countries Promoting the use of EVs

Global EV BOOM


Why Is There A Need For EVs Globally?

In its World Energy Outlook, the International Energy Agency identifies pathways for clean energy technological solutions needed to reach global carbon neutrality (i.e. net zero GHG emissions) by 2050. It also details interim goals that will ensure the world is on the path to carbon neutrality. In order to achieve these goals, global electric vehicle sales need to increase from <3% of new vehicle sales to 50% by 2030.

Increased awareness of fossil fuels’ effect on the planet, and the universal imperative for all nations across the planet to act on climate NOW to reduce GHGs, have driven many countries around the world to implement policies encouraging electric and hybrid vehicles. The sales of electric vehicles (EVs) have increased globally, with EVs, including 100% EVs and plug-in hybrid EVs; and now account for over 2.5 million vehicles annually

Over 90 million vehicles (internal combustion engine {ICE} vehicles, EVs, and hybrids included) are manufactured worldwide each year. Globally,  China produces over 1 in 4 vehicles (of all the world’s vehicles and of all types) annually; and almost another 1/3 of vehicles in the world are manufactured in – the United States, Japan, Germany. The U.S. produces more than Japan, and Japan’s vehicle production is a bit higher than Germany. Other major vehicle-producing countries include India and Mexico, which combined with the U.S., Japan, and Germany, produce roughly another 1/3 of the world’s vehicles.

The remaining auto manufacturing representing the final ~1/3 of the global vehicle market is done in other countries, most significantly South Korea. Even with all of the above countries contributing to manufacturing EVs, EVs still only account for less than 5% of vehicle manufacturing globally (mostly in the form of electric and plug-in hybrid light-duty passenger cars and trucks). This number of EV production needs to increase in order for the world to meet global climate goals. 

The global reliance on the automobile results in a rapid increase in carbon dioxide emissions. Climate change has disrupted the entire atmospheric setting of the planet, causing global warming and extreme weather such as floods, increased seas levels, heat waves, droughts, hurricanes, and more storms; all of which in turn affect food production, human health, and our general well being. EVs and hybrids are a cost-effective, efficient way to fight climate change (while consumers get a superior product) – see The Benefits of Hybrids, Plug-in Hybrids, and Electric Vehicles.


 Ten Countries promoting Electric Cars and Hybrids  

written by Eseandre


Norway

Norway is first on our list because its government is in full support of cleaning the atmosphere and creating sustainable energy for its citizens; especially with regard to EVs. Norway has substantial tax incentives for EV buyers/ owners. Norway has built an extensive EV infrastructure, with ubiquitous, often free, EV charging; and Norway further incentivizes EVs with dedicated, free EV parking spots with charging included, as well as entire EV garages dedicated to these perks, and free use of bus/ carpool lanes for EVs. The entire country of Norway plans for carbon neutrality by 2030, and that new car sales should be entirely zero emission vehicles by 2025. The sales of EVs in Norway have gone up to over half of new vehicle sales (when plug-in hybrids are also considered). EV customers and owners in Norway enjoy incentives such as tax exemptions for EV purchases, free parking spots, and free charging – incentives aimed to get others interested and invested in the transition to an all-EV society.  Oslo, Norway is even considering a complete ban of fossil fuel-based vehicles from its city center.

France

Even with the yellow vest event just passing by, the sales of electric cars in France have gone up 111%. Paris is aiming to ban all cars except electric vehicles by 2030 in the city, and in the country, there will be a similar ban by 2040. In the bid to reduce GHGs and air pollution, Emmanuel Macron government has offered incentives in the cost of  EVs, and plans to increase charging ports to 100,000 by the year 2020. 

The UK

The UK has declared it will be fully electric car compliant by 2040, and the UK has also passed a nationwide law to ban traditional ICE car sales by 2030. Although the government is thriving hard to be a major force with the zero-emission ambitions for the country, and the congestion charge in London, the structure to sustain the use of EVs, and plug-in cars are still not in place, and the government needs to fix that for the program to be a success. However, the UK is home to some of the best brands of electric and plug-in cars.

China

China is the largest producer of fossil fuel vehicles globally, but with the country’s moves towards clean energy and sustainability, China is at the forefront of producing electric and hybrid cars, trucks, and buses. Sales of EVs in China climb higher as the need for clean energy and GHG reduction nationwide remain a priority. 

The USA

Sales of EVs and hybrid vehicles have increased in the United States by over 25% annually since 2016; with even greater increases seen in the U.S. EV market recently, in large part thanks to Tesla. When discussing EVs and America, one immediately thinks of Tesla, the auto manufacturer based in Palo Alto CA. Tesla is the #1 manufacturer of EVs worldwide. Tesla car sales have increased by 280% annually over the last year in the United States, and by over 138% worldwide, now claiming sales of around 250,000 cars worldwide annually, most of them in the United States.

Germany

Electric cars and hybrids have flooded the streets of Germany. Germany will have more than a million EVs on city streets in the country in a couple of years. Germany is known for its financial incentives for buyers of German EVs and hybrids, and over 30 makes of German EVs in the country.

Brazil

Brazil is second on our list, not just for a country that uses electric cars, but for being among the pioneers of pushing for renewable energy in all facet of its economy. As the Brazilian government implements the idea of EV, we are seeing more industrial and residential sectors combining to sell the impact of greenhouse gas and how we can change it. Since the gradual introduction of EVs in Brazil, the emission rate is reducing as both electric cars, and fuel cell vehicle is seen on the streets. The country also uses cleaner fuel alternatives such as ethanol blends and biomass. 

Please see our article on Curitiba for more on this city in Brazil, and Curitiba’s successful use of hybrid vehicles in sustainable mass transit systems.

The Netherlands

The Netherlands has set a target for itself that only emission-free vehicles will be allowed on the streets by 2030.The government of the Netherlands will subsidize the sales of electric vehicles beginning in 2021. EVs will be exempt from taxes on motor vehicles starting in 2025.  

India

With little clear government support for EVs, lack of charging infrastructure, and the higher cost of EVs compared to fossil fuel cars, India struggles in its drive for EVs. However, the success of EVs in India might be achieved in a different way; the introduction of the two-wheel electric scooters throughout India to combat the dense population of the country, and pollution. Hopefully, soon electric scooters will be affordable enough for the masses in India, in the aim to cut down on the GHGs in the country. 

Canada

The government of Canada is investing in green infrastructure and clean technologies including partnering with private and public bodies to attain the dream of a clean Canada. This drive toward sustainability has also pushed the need for zero-emission vehicles on Canadian roads, as well as the introduction of charging stations to accommodate the growing number. Although it has not attained the position of countries like Norway, China or even its neighbor the US, it is on the verge of being one of the countries with a higher renewable and sustainable energy in the future. 


The earth is our home, using renewable and creating a more sustainable form of energy is all we need to change the problems that currently plague us. Countries setting policies that help people make the sustainable transit transition; and the global population taking the initiative to adopt hybrid vehicles, plug-in EVS, and 100% EVs, is a significant help to the cause. (Other countries not on this list are notable for their production and incentivizing of use of EVs, most notably South Korea).

The demand for EVs globally is expected to rise sharply in coming decades, as illustrated in this chart – with stats from BNEF, BP, OPEC, Exxon, and the IEA –

Electric vehicle global demand forecast

Please also see:

The Benefits of Hybrids, Plug-in Hybrids, and Electric Vehicles


About the author – Eseandre is a passionate freelance writer, with over 2,000 positive reviews on Fiverr, who loves travelling and caring for the less privileged, and the earth. You can find her here- https://www.fiverr.com/eseandre 



 

Categories
All Posts Climate Change Green City Times green city Sustainability News

Putting a Price on Carbon

Pricing Carbon


Carbon Markets

Carbon cap and trade systems are regulatory policies in which countries, provinces, states, and even cities, set a limit (a cap) on the amount of carbon dioxide and other greenhouse gas emissions (GHGs) industries/ power plants can emit. Carbon pricing plans incorporating an emission trading system (ETS) are commonly referred to as carbon cap & trade systems in the U.S, although the term also applies to similar systems in Europe, as well as elsewhere globally where an ETS is legislated for any administrative area. [In this article, we will treat cap and trade systems and ETS as synonymous].

Utilities and industries in areas where cap and trade legislation have been mandated are subject to an ETS; which is the regulatory system that details what limits for GHGs industries have, and the value of carbon permits. Carbon-intensive industries that are considered for inclusion in emission trading systems include fossil fuel power plants & oil/ gas refineries (always included in carbon pricing systems). Other possible inclusions in ETS legislated across the world include fossil fuel intensive product manufacturing companies, and/ or cement and steel manufacturing industries, and/or transportation sectors that rely on fossil fuel energy (such as long-haul shipping including heavy trucking, ocean freight shipping, & aviation).

Governments may either “grandfather in” GHG allowances (essentially give away permits based on past GHG production), or auction permits off. Carbon pricing has a few purposes that benefit people generally; it can be used for the public good through encouraging/ increasing sustainability measures such as renewable energy projects and energy efficiency projects.

The primary function of carbon pricing is to lower GHGs, fight climate change, and therefore benefit all of humanity. An ETS, and/ or a carbon tax, makes using dirty fossil fuels more­ expensive, thereby encouraging utilities and industries to reduce consumption of fossil fuels and increase energy efficiency. An ETS and/ or a carbon tax also makes renewable energy a more attractive option than fossil fuels economically (adding economic benefits to the environmental benefits of renewable energy).

In an ETS that does use auctions, auctions for carbon permits (one carbon permit is usually = to 1 metric ton of CO2)  establish a price on carbon. ETS with auctions are much more effective than systems where carbon credits are just ‘grandfathered in”. The cost of carbon permits, or GHG emission permits, is essentially the price of carbon in these systems. As GHG emission permits are auctioned off, a price on carbon is established.

Companies can also keep carbon credits for future use in trading, or for their own allowances. For companies that run over their GHG emissions limits and don’t cover their allowances, a fine is often imposed. Carbon cap and trade systems are usually designed to adjust the cap annually and limit GHGs, gradually reducing the allowable limit of GHG pollution for those industries targeted by the cap and trade system.


Carbon Offsets

Carbon Offsets are a vital part of making ETS work; allowing companies to invest in international sustainability projects in order to fulfill their GHG reduction obligations. There are trades that offset GHG emissions in cap & trade systems; such as trades for credits with companies that have, or invest in – forestry projects, renewable energy, energy efficiencygreen building, and sustainable transit projects. Sanctioned GHG offsets also include investment in reforesting or projects that work to limit deforestation or trades with companies that have livestock projects that incorporate sustainable practices, or with companies that invest in carbon capture and storage (CCS) or other carbon sequestration measures.

To make cap and trade systems even more effective, there should be even more offset credits allowed in these systems for trades with companies that implement GHG emission saving renewable energy and energy efficiency technologies such as: solar and wind farms and other renewable energy projects, CCS, integrative gasification combined cycle (IGCC), anaerobic digestion (AD), combined heat and power (CHP), etc…

Carbon offsets can be purchased by individuals, non-profit organizations, and private businesses of every size, from small businesses to large international companies, and even governments; in order to lower their net carbon footprint and/ or in order to support sustainability efforts worldwide. Carbon offsets help balance out global GHGs and other environmental degradation; for instance, damage to the environment wrought by companies that commit deforestation, and companies that are reliant on fossil fuels, are a partial solution to the deforestation problem.

Carbon offsets for reforestation, planting trees, and other conservation projects provide fossil fuel intensive companies with “nature-based” offsetting solutions. Trees, plants, and wilderness ecosystems sequester carbon. Ideally, carbon offsets should be valued and calibrated to truly offset the company’s emissions, as reflected in the company’s investment in the offsets.

“Nature-based” carbon offsets act as land sinks, optimally sequestering carbon to the degree the company purchasing the offsets is emitting carbon – but, this depends on how the “nature-based” offsets are valued. Renewable energy and energy efficiency projects have the potential to directly lower emissions of the company if the investments are made for the company itself. Otherwise, the carbon offsets are valued as creating “avoided emissions” by investing in a 3rd party company’s renewable energy and energy efficiency projects.

In many cases, carbon offsets are purchased by international companies in industries running polluting factories, using carbon-intensive fuel for energy, and manufacturing fossil fuel intensive products; and this often includes companies involved in deforestation. Some offsets often formally offered in emission trading schemes globally include forestry projects (like planting and caring for trees; restoring, maintaining, and protecting forests and their ecosystems), as well as renewable energy and energy efficiency projects worldwide.

The amount of carbon offsets required for a company to purchase in an emission trading system (ETS) is proportional to the amount of pollution, GHGs, released by the company involved in the ETS; and should also be measured by the deforestation that a company commits, and the subsequent effect of that behavior by the company on the environment. However, as of now, most ETS around the world only use the amount GHGs released by companies, not deforestation, as a metric to assess a companies’ responsibility for purchasing carbon offsets. ETS, and other carbon pricing mechanisms (such as a carbon tax), can be mandated by states, provinces, and entire countries.

For some companies, it might make more financial sense and be more cost-effective to make the effort to reduce emissions through emission saving and energy efficiency technologies and/ or expanded use of renewable energy; and then sell their permits to companies that are over their GHG limit. However, usually, most companies tend to buy carbon permits if it’s cheaper to buy them than to try to lower emissions. Carbon permits can be invested in by businesses, industries, or even the public in some regions, via a carbon futures market.


Global carbon pricing markets

Carbon pricing, either as carbon cap and trade systems or a carbon tax, are in effect in over 40 countries and 25 states/ provinces/ cities globally. The largest market for cap and trade is in the EU with the European Union Emissions Trading System (EU ETS). The EU ETS covers more than 11,000 power plants and industrial stations in over 30 countries, as well as airlines. The primary focus of the EU ETS is to fight climate change by lowering GHG emissions.

The EU ETS remains the largest international trading organization for trading GHG emission allowances. The EU ETS has successfully put a price on carbon, with its system of trading allowances of GHG emissions, and has also watched GHG emissions fall by a few percentage points annually since it began in 2005. The cap, or limit, set on GHG emissions will be, on average, over 20% lower on all power plants and industries by 2020 from 2005 levels (when the program started), as the EU continues to make efforts to reduce pollution.

Clean, energy efficient, low-carbon technologies like CCS, IGCC, CHP, and AD, as well as renewable energy, have grown in popularity throughout Europe, in part, because of the rising price of carbon resulting from the EU ETS. Here’s a helpful chart of carbon pricing for various ETS and carbon tax systems around the globe (carbon pricing is usually based on the basic per unit price of 1 metric ton CO2):

Ranges of carbon pricing worldwide

All countries deal with cap and trade differently. Most have cap and trade for industry and power sectors. For example, South Korea has cap and trade for heavy industry, power, waste, transportation, and building sectors. China has six provinces testing out cap and trade, and along with South Korea, represents a very large carbon market (with just those 6 provinces China is a large market, the entire country represents the single largest carbon market, by far).

The U.K., France, Switzerland, and the Scandinavian countries Norway, Sweden, and Finland, have legislated both carbon tax and cap and trade programs that regulate a broad swath of carbon-intensive industries. Finland and Sweden’s carbon pricing systems represent a high enough price per metric ton of CO2 to make a significant difference.

Finland’s carbon tax represents the type of carbon pricing needed to make a substantial impact on industries in order to stabilize GHGs, as represented in the global carbon pricing chart seen above of select countries’ price of a metric ton of carbon in their ETS or carbon tax. Over 40 governments worldwide have mandated a price on carbon. Here’s another map of carbon pricing systems around the globe:



carbon markets worldwide

 



The nine-state agreement in the U.S. northeast, the Regional Greenhouse Gas Initiative (RGGI) is another major carbon cap and trade trading pact, and is, at least partially, based on the pioneering EU program. These states have auctioned off carbon allowances to industries in RGGI states, and have thereby collected well over $1 billion from carbon cap and trade programs, much of which has been reinvested in energy efficiency, renewable energy, and other clean energy programs.

Since carbon cap and trade has started in the U.S. northeast, GHG emissions have steadily dropped. Like the EU, this in part due to investment in clean energy technologies, but also because some companies in the U.S. northeast have switched from dirtier fossil fuels like coal to cleaner natural gas generators in power plants, or to renewable energy.



A few current carbon cap and trade markets are:

EU ETS:

ec.europa.eu/clima/policies/ets


California cap & trade, linked with Quebec – Western Climate Initiative:


The U.S. Northeast region (RGGI):

bostonglobe.com/business/carbon-caps-help-northeast-economy-report-says

STORY – Cap & Trade Shows Its Economic Muscle in the Northeast, $1.3B in 3 Years (Regional Greenhouse Gas Initiative offers blueprint to all states) – By Naveena Sadasivam, InsideClimate News– insideclimatenews.org/cap-trade-shows-economic-muscle-northeast-13-billion-RGGI-clean-power-plan



 

Categories
All Posts Climate Change Net Zero Sustainability News

The UNFCCC

UN Framework Convention on Climate Change (UNFCCC) – Conference of the Parties

World leaders, dignitaries, and diplomats, from almost 200 nations, assemble every year for the United Nations Framework Convention on Climate Change. UNFCCC members assess international progress in mitigating global anthropogenic climate change.

Members also negotiate protocols and treaties between countries, further addressing the plethora of climate-related issues. The annual UNFCCC meetings are called Conference of the Parties (COP). Since 1994, the COP has convened annually at a different international city for the meetings (the most famous COP being COP21 in Paris in 2015, commonly known as the Paris Climate Accord).

The COPs include the following international discussions:

All of these discussions (among other global sustainability issues), discussed by UNFCC members at the COPs, are intended to produce viable solutions to meet the goal of dramatically reducing global GHGs. The Intergovernmental Panel on Climate Change (IPCC) advises that to avoid potentially catastrophic effects of climate change, world governments need to reduce GHGs substantially in order to keep global warming to “well below 2°C”; and ideally to no more than 1.5°C, this century.


COP21 – the Paris Climate Accord

Almost every nation in the world has now signed the initial Paris Climate Accord (all 197 member nations to the UNFCC have signed the Accord; 190 of the 197 nations have ratified the Accord and have also pledged NDCs).

Even a few nation-states that aren’t in the UN, like the State of Palestine and the Cook Islands, signed as member nations to the Paris Climate Accord. The United States was the only nation to announce a pull-out from the Paris Accord, though this never really took effect; and President Biden brought the US back into the Paris Climate Accord.

NDCs have progressed to the point where many nations have taken the step of pledging net zero GHG emissions (carbon neutrality). China has set their net zero target for 2060; and soon after, the US committed to net zero by 2050; and both of these net zero commitments followed earlier European carbon neutrality pledges. The EU has a net zero target of 2050, and a few European nations independently have the same, or even more ambitious, targets.

These net zero pledges represent ambitious goals to keep global warming well below 2°C (that’s 2°C rise above pre-industrial global temperature averages), and ideally to 1.5°C, this century; making good on the latest IPCC climate targets. In future COPs, such as the COP26 in Glasgow, Scotland, expect international net zero pledges to expand, and become a regular part of UNFCCC language; along with the term – ambitious climate targets.


For more details on NDCs, please see:

The Fight Against Climate Change – National Carbon Reduction Goals


Putting a Price on Carbon – Establishing Carbon Markets

Perhaps the most contentious topic to be discussed at the COPs is carbon pricing; systems in which governments can incentivize carbon-intensive industries, entire countries, and regions, to lower their GHG emissions by pricing carbon dioxide emissions.

Experts on climate mitigation policies believe that international carbon pricing systems may ensure the quickest path to net zero emissions (carbon neutrality). Individual nations, states, and provinces, continue to ultimately decide on carbon pricing legislation; as well as the inner-workings of any carbon pricing system, including whether any potential national or regional carbon pricing system is to function as a carbon tax, or  cap-and-trade/ emissions trading system (ETS).

This process of high-level intergovernmental discussions of potentially mandating national prices on carbon could be encouraged by the UNFCCC in the future. If the UNFCCC took the step of directing nations to adopt carbon pricing, global warming would almost certainly be abated sooner than without prices on carbon emissions worldwide.

The European Union already does have carbon pricing – the EU ETS. Launched in 2005, the EU ETS has gradually evolved from a very low price on carbon, to a slightly higher one; and it’s expected that the European Commission will continue to increase the EU ETS carbon price with the continued evolution of climate ambition. Other European nations have independently developed an ETS and/ or a carbon tax; and many other countries, states, provinces, and regions worldwide, have also developed carbon pricing.

For more on carbon pricing around the world, please see: Putting a Price on Carbon. There has been significant progress made through recent COPs on the topic of carbon pricing, as described in this quote- “Leaders across the Americas have pledged to step up the use of carbon pricing as a key instrument of economic and environmental policy to reduce carbon emissions.” FROM- unfccc.int/news/leaders-across-the-americas-step-up-carbon-pricing.



There is currently a significant gap in the commitments that nations worldwide have made to reduce greenhouse gas emissions; and the reality of global warming still accelerating at a perilous pace. Green City Times has written about the–

Shortfall in International GHG Pledges

This following quote is by António Guterres, the current United Nations Secretary-General-

“In 2015, the world’s nations recognized the urgency and magnitude of the [global climate change] challenge when they adopted the historic Paris Agreement on climate change with a goal of limiting global average temperature rise to well below 2 °C; while aiming for a safe 1.5 °C target. The unity forged in Paris was laudable – and overdue. But, for all its significance, Paris was a beginning, not an end. The world is currently not on track to achieve the Paris targets. We need urgent climate action and greatly increased ambition – in emissions reductions and in promoting adaptation to current and future impacts of climate change.” FROM- unfccc.int/resource/annualreport



GCT tags

carbon farming carbon footprint carbon neutral carbon neutrality carbon pricing carbon tax clean energy Clean Power Plan climate change climate solutions cogeneration Conference of the Parties cover crops e-bikes electric vehicles energy energy efficiency energy star Freiburg global warming green building greenhouse gas emissions hydrogen hydrogen fuel cells Intergovernmental Panel on Climate Change LEED nationally determined contributions net zero greenhouse gas emissions nuclear energy Paris Climate Accord recycling renewable energy reverse osmosis smart grid smart meter solar sources of renewable energy sustainability sustainable agriculture sustainable mass transit United Nations Framework Convention on Climate Change urban planning waste-to-energy waste management zero-waste

Categories
All Posts Climate Change Green City Times green city Sustainability News

Carbon tax – a levy on pollution whose time has come

Defining effective carbon taxes

A carbon tax is a levy in countries and regions on: fossil fuel power plants, oil refineries, and/or industries, and/or companies; that use fossil fuels (tax applies directly), or on those that consume energy-intensive goods and services that depend on fossil fuel energy generation (the tax applies indirectly); and emit carbon dioxide and other greenhouse gas emissions (GHGs) in the process. An indirect consequence of carbon taxes may ultimately be higher prices for energy and gasoline/ diesel. The relationship between a carbon tax and higher energy prices is arbitrary, as it’s up the the fossil fuel company whether to raise prices for the end-use consumer, take financial losses as a result of the tax, or use more renewable energy and energy efficiency measures to lower CO2 output and thus lower the applicable carbon tax. A carbon tax puts a price on carbon for (at least some of) the cost to humanity and the planet of the use of fossil fuels. The cost of carbon dioxide emissions produced with the burning of fossil fuels is also known as the social cost of carbon. Carbon-intensive industries that could be in carbon tax systems include: fossil fuel power plants (always in carbon tax systems), and/ or industries and companies such as fossil fuel intensive product manufacturing companies, and/ or cement and steel manufacturing, and/or transportation sectors that rely on fossil fuel energy.

This cost cannot be tabulated in exact terms, for it’s the accumulated cost of the damages of the burning of fossil fuels to the environment, damages from climate change, damages to human health, and related costs (negative externalities) of the use of fossil fuels that can only be estimated. The carbon tax itself can be seen as an added fee on the production and distribution of fossil fuels,. The government sets a price per ton on carbon, and then that translates into a tax on oil, coal, and natural gas. This does usually mean higher prices for the end-use consumer for things like gas and electricity, due to higher costs for production and distribution of fossil fuels, and fossil fuel-intensive products and services; in the case of top-down industry carbon taxes.

Businesses and utilities who face a carbon tax then have the incentive to invest more in energy efficiency, renewable energy, and other GHG reducing technologies (such as carbon capture); to try and lower their applicable carbon taxes. Another option would be for companies facing a carbon tax to maintain the market price for their goods and services set prior to implementation of the tax, and absorb the cost of the tax. Yet another option, and along with companies’ making an effort to produce cleaner energy, this is a commonly implemented option; higher prices due to carbon taxes may result in higher prices to end-consumers (the carbon tax simply gets passed on to the consumer, allowing the company to keep profits from lowering). Individual consumers then have the incentive to reduce consumption of fossil fuels and fossil fuel-intensive products subject to carbon taxes, switch to electric vehicles and renewable energy (thus avoiding higher prices stemming from the carbon tax), and increase their energy efficiency habits. Revenue from carbon taxes can, in some cases, go to energy efficiency measures, sustainable transportation, renewable energy, and other clean energy projects.

The revenue from carbon taxes can also simply be distributed or refunded to the public through tax rebates or payroll tax reductions (revenue-neutral carbon taxes). With revenue-neutral carbon taxes, higher energy prices may be offset by tax dividend refunds, or tax cuts, of roughly similar value. Carbon tax revenue can be distributed, at least in part (if not completely), as: personal income or business income tax cuts, rebates, tax credits, payroll tax cuts, a “carbon dividend” in the form of a monthly, quarterly, bi-annual, or annual refund; or carbon tax revenue can be used to reduce taxes for the public and businesses in other sectors of the national economy. Carbon tax revenue is sometimes both invested in clean energy projects and given back to the public as refunds.

The principle of mitigating negative externalities (the damage caused by fossil fuels), and having the relative costs of pollution paid for, is the primary purpose of the carbon tax. Who bears the ultimate burden of the tax is a hypothetical question that has a couple of answers. Unless the carbon tax is specifically aimed at consumers, businesses that produce and distribute fossil fuels should at least consider bearing the brunt of the tax. However, in practice, individuals may ultimately end up paying more for gas and on the utility bill, among other fossil fuel related goods and services; instead of the fossil fuel-intensive companies in industries subject to carbon taxes, that haven’t already fully embraced renewable energy and/ or energy efficiency.

A carbon tax is enacted with the goal of lowering greenhouse gas emissions. Sustainable public transit, energy efficiency products, renewable energy, and GHG reduction technologies such as carbon capture and storage, become even greater alternatives as fossil fuel use is penalized; and clean energy is made relatively cheaper. One other benefit of carbon taxes, besides the revenue generated for the public good, and the incentives to reduce fossil fuel consumption and increase clean energy efforts; is the increased attractiveness of the cost of renewable energy, which is made cheaper than fossil fuels.

Carbon taxes worldwide

Denmark, Finland, Ireland, the Netherlands, Norway, Sweden, Switzerland, British Colombia, Canada, and the UK (among other countries and localities) have all successfully implemented a partial carbon tax on some industries, as well as some fossil-fuel-intensive goods and services. Thus far, these countries have not being able to implement a broad, universal carbon tax. Generally, reports of lower greenhouse gas emissions follow the passage of a carbon tax (to the tune of 2-3% annually in most cases). The province of British Columbia, Canada, has reported drops of around 5% annually of greenhouse gas emissions due to its aggressive carbon tax policies.

This is a global map of carbon tax and cap-and-trade systems that are existing and planned for implementation:


carbon markets worldwide


Please also see:

Putting a price on carbon