GCT Featured Articles
Sustainable City – CHICAGO
By Daniel 2023/01Modern Sustainable Waste Management Technologies
By Daniel 2022/1010 IoT and Sustainability Technologies for Smart Cities
By Daniel 2022/10Profiles in Sustainable Cities – San Diego, California
By Daniel 2022/10Clean Energy Jobs are UP, and RE cost is down
By Daniel 2022/05Defining an Effective Carbon Market
What EXACTLY IS a carbon tax?
A carbon tax is aimed at putting a price on carbon dioxide, as well as other GHGs; and effectively lowering emissions from fossil fuel-intensive industries. The carbon tax itself can be a fee on the production, distribution, use of fossil fuels; and the use of fossil fuel-based energy for industries.
Governments set a price per ton on carbon, and then that translates into a tax on oil, coal, and natural gas. This ultimately means higher prices for the end-use consumer for things like gas and electricity due to higher costs for production and distribution of fossil fuels in the case of top-down industry taxes.
A carbon tax is a levy on the following:
- fossil fuel power plants (directly),
- oil refineries (directly),
- industries and/ or fossil fuel-intensive companies (directly);
- and potentially, consumers (indirectly) that use fossil fuels are responsible for generating greenhouse gas emissions (GHGs) in the process.
Carbon-intensive industries that could be in carbon tax systems include: fossil fuel power plants (always in carbon tax systems), and/ or industries and companies such as fossil fuel-intensive product manufacturing companies, and/ or cement and steel manufacturing, and/or transportation sectors that rely on fossil fuel energy.
Purpose of a carbon tax
An indirect consequence of carbon taxes may ultimately be higher prices for energy and gasoline/ diesel. The relationship between a carbon tax and higher energy prices is arbitrary. It's up to the fossil fuel company subject to the carbon tax whether to raise prices for the end-use consumer or take financial losses as a result of the tax.
Alternatively, companies may choose to use more renewable energy and energy efficiency measures to lower CO2 output; and thus lower the applicable carbon tax. Incentivizing companies to increase their use of clean energy technologies is the major objective of a carbon tax. A carbon tax creates the financial incentive to use technology to lower emissions and thus any applicable carbon tax or to switch to renewable energy and avoid the tax altogether.
A carbon tax puts a price on carbon in a given country for the cost to humanity and the planet of the use of fossil fuels (damage to the public health, damage to the environment, from fossil fuel combustion - negative externalities, also known as the social cost of carbon). GHGs other than carbon dioxide can also be included in carbon tax systems (however, carbon dioxide remains the most prevalent GHG included in carbon taxes worldwide).
European Carbon Taxes
The following is a brief insight into carbon taxes in Europe, which is where most carbon taxes in the world currently are (as opposed to the more widely globally adopted emission trading systems - see Putting a Price on Carbon for more information)>>>
In recent years, several countries have taken measures to reduce carbon emissions using environmental regulations, emissions trading systems (ETS), and carbon taxes. In 1990, Finland was the world’s first country to introduce a carbon tax. Since then, 15 European countries have followed, implementing carbon taxes that range from less than €1 per ton of carbon emissions in Ukraine and Poland to over €100 in Sweden.
Sweden levies the highest carbon tax rate at €112.08 (US$ 132.17) per ton of carbon emissions, followed by Switzerland (€83.17, $98.08) and Finland (€62.00, $73.11). You’ll find the lowest carbon tax rates in Poland (€0.07, $0.08), Ukraine (€0.33, $0.39), and Estonia (€2.00, $2.36).
Carbon taxes can be levied on different types of greenhouse gases, such as carbon dioxide, methane, nitrous oxide, and fluorinated gases. The scope of each country’s carbon tax differs, resulting in varying shares of greenhouse gas emissions covered by the tax.
Negative Externalities
Negative externalities, in the case of fossil fuel production and use, are the costs of damage to the environment and public health. Fossil fuels carry significant costs beyond the purchase price of the energy and goods produced from oil, gas, and coal. These negative externalities show up as costs in healthcare, environmental clean-up, as well as incalculable costs of significant damages to public health and the environment.
A clear example of the negative externalities of fossil fuels is the cost to public health and the environment of methane leaks from gas power plants. Another example is the costs of coal pollution to public health and the environment. The true cost of negative externalities of fossil fuel combustion cannot be tabulated in exact terms, for it’s the estimated accumulated cost of -
- damage to the environment,
- climate change,
- damage to human health,
- other costs stemming from the use of fossil fuels (such as costs to public health systems)
Carbon taxes are a way for governments to enforce the true cost of carbon pollution. This is done by charging polluting fossil fuel industries an appropriate fee to account for the actual costs borne by their activities. At present, industries are subject to a carbon tax for their Scope 1 emissions (directly) and Scope 2 emissions (indirectly). Assessing the actual cost of Scope 3 emissions, or trying to charge end-users a carbon tax is problematic and rarely conceived of or legislated. Definitions of Scope 1-3 emissions are below:
- Scope 1 emissions (direct use of polluting fossil fuel energy, fuel combustion on-site, fuel combustion company vehicles
fugitive emissions) - Scope 2 emission (indirect electricity generated and purchased in the production of the fossil fuel products, indirect use of energy [heat, steam, etc...] in the production process)
- Scope 3 emissions (all other emissions in the value chain and carbon footprint of the fossil fuel product, purchased goods and services, business travel, employee commuting, waste disposal, use of sold products, transportation and distribution (up and downstream), investments, leased assets, and franchises)
- Gaining worldwide consideration and implementation are carbon border taxes, which charge companies based on the carbon footprint of the fossil fuel-intensive product being exported to the country enforcing the carbon border tax
Positive effects of carbon taxes on the reduction of GHGs from industries
Businesses and utilities who face a carbon tax then have the incentive to invest more in energy efficiency, renewable energy, and other GHG-reducing technologies (such as carbon capture); to try and lower their applicable carbon taxes. Another option would be for companies facing a carbon tax to maintain the market price for their goods and services set prior to implementation of the tax and absorb the cost of the tax.
Yet another option, and along with companies' making an effort to produce cleaner energy, this is a commonly implemented option; higher prices due to carbon taxes may result in higher prices to end-consumers (the carbon tax simply gets passed on to the consumer, allowing the company to keep profits from lowering).
Individual consumers then have the incentive to reduce consumption of fossil fuels and fossil fuel-intensive products subject to carbon taxes, switch to electric vehicles and renewable energy (thus avoiding higher prices stemming from the carbon tax), and increase their energy efficiency habits. Revenue from carbon taxes can, in some cases, go to energy efficiency measures, sustainable transportation, renewable energy, and other clean energy projects.
The revenue from carbon taxes can also simply be distributed or refunded to the public through tax rebates or payroll tax reductions (revenue-neutral carbon taxes). With revenue-neutral carbon taxes, higher energy prices may be offset by tax dividend refunds, or tax cuts, of roughly similar value as the higher prices for consumers.
Carbon tax revenue can be distributed, at least in part (if not completely), as:
- personal income or business income tax cuts,
- tax rebates,
- tax credits,
- payroll tax cuts,
- a "carbon dividend" in the form of a monthly, quarterly, bi-annual, or annual refund,
- or carbon tax revenue can be used to reduce taxes for the public and businesses in other sectors of the national economy
Carbon tax revenue is sometimes both invested in clean energy projects and given back to the public as refunds/ tax credits. However, currently, carbon taxes are primarily used worldwide to help fund renewable energy, energy efficiency, and other public goods programs for the region implementing the carbon tax. Notable exemptions exist, where carbon tax revenue is redistributed to the population, in one of the forms described above- such as throughout provinces in Canada.
Pros and Cons of Carbon Taxes
The principle of mitigating negative externalities (such as the damage caused by fossil fuels), and having the relative costs of pollution paid for, is the primary purpose of the carbon tax. Who bears the ultimate burden of the tax is a hypothetical question that has a couple of answers.
Unless the carbon tax is specifically aimed at consumers, businesses that produce and distribute fossil fuels should at least consider bearing the brunt of the tax. However, in practice, individuals ultimately end up paying more for gas and higher prices on their utility bills, among other fossil fuel-related goods and services, from companies that haven't already fully embraced renewable energy.
A carbon tax is enacted with the underlying goal of lowering GHGs. Low carbon measures such as sustainable public transportation, energy efficiency, and technologies such as carbon capture and storage, become even greater alternatives when a carbon tax is enacted; as fossil fuel-intensive industries are penalized. One other benefit of a carbon tax, besides the revenue generated for the public good, and the incentives to reduce fossil fuel consumption and increase energy efficiency; is the increased attractiveness of the cost of renewable energy.
Denmark, Finland, Ireland, the Netherlands, Norway, Sweden, Switzerland, Canada, Chile, and the UK, (among other nations, countries, and states), have all successfully implemented a partial carbon tax on some goods and services, while not all being able to implement a broad, universal carbon tax. Generally, reports of lower greenhouse gas emissions follow the passage of a carbon tax (to the tune of 2-3% annually in most cases this decade). The province of British Columbia, in Canada, has reported drops of around 5% annually of greenhouse gas emissions due to its aggressive carbon tax policies.
Please also see:
GCT Featured Articles
Oslo, Norway – Eco-Capital
Oslo: Net Zero Future | Oslo has fleets of clean mass public transit - trams, electric buses and ferries - powered...
Read PostRegenerative Agriculture
Regenerative agriculture creates carbon sinks; turning farms into healthy ecosystems that sequester carbon with plentiful...
Read PostSustainable City – CHICAGO
Chicago might not be widely known as a green city, however, the city has a vast network of sustainable mass public transit...
Read PostVauban and the Plus-Energy Sun Ship
Vauban is an exemplary sustainable town and a zero-emission district. Most energy for buildings is from rooftop solar...
Read PostClimate Solution – Sustainable Agriculture
Benefits of Sustainable Agriculture | Sustainable ag. turns farms into thriving biodiverse lands that produce...
Read PostAustin, Texas – A Sustainable City
Eco-friendly Capital | Austin is emerging as a leader in renewable energy, community solar, and LEED building efficiency...
Read Post12+ Ways You Can Help the Environment
Lower your carbon footprint, save energy, and help the environment. Here are 12+ actions for sustainable individuals:...
Read Post10 Ways to Reduce Food Waste
by Jane Marsh | Significant amounts of food waste originate from cities. Urbanites can use food waste reduction methods...
Read PostModern Sustainable Waste Management Technologies
5 Ways for SMART Cities to Implement Sustainable Waste Management | by Jane Marsh | Cities are implementing zero-waste...
Read Post5 Categories of Change in Climate
Climate change is adversely affecting all parts of the earth. There have been dramatic increases in greenhouse gas emissions...
Read Post10 IoT and Sustainability Technologies for Smart Cities
Technologies Benefit Sustainable Smart Cities | by Jane Marsh | As the conversation around greenhouse gas emissions...
Read PostProfiles in Sustainable Cities – San Diego, California
Sustainable cities, like San Diego, have eco-city designs that prioritize consideration of social, economic, and environmental...
Read PostOffshore Wind Farms in the United States | Block Island Leads the Way
First of many US offshore wind farms | The United States' 1st operational offshore wind farm is the Block Island...
Read PostClean Energy Jobs are UP, and RE cost is down
Clean Energy JOBS | The future of employment in the energy sector is in clean energy, energy efficiency, and renewable...
Read PostUsing Technology to Provide Clean Water to Cities
How Technology Can Help Cities Avoid Another Flint Water Crisis | Article by Jane Marsh | The green movement is influencing...
Read PostHow Safe & Clean is Nuclear ☢️ Energy?
When looking at climate solutions for clean energy generation, it is prudent to look at all clean energy sources. Nuclear...
Read PostKamuthi Solar Project, Bhadla Solar Park; and the largest solar PV farms in India, China, and other countries
Featuring over 2.5 million individual solar PV modules, and on 2,500 acres, the Kamuthi Solar Power Project supplies...
Read PostMicrogrids spread across Africa
Developing Microgrids | As African nations push for rural electrification, many look to microgrids as a sustainable...
Read PostFuture Generations of Batteries
Next generation li-ion batteries | Next-gen lithium-ion (li-ion) batteries can charge quickly, are rechargeable,...
Read PostClean Hydrogen Power
Hydrogen (H2) and the Clean Energy Transition | Hydrogen created with clean energy is one of the most promising...
Read PostNuclear – necessary energy
Both nuclear and renewable energy are needed in the global energy mix to help fight climate change. In order to cut...
Read PostCOP21 – good news for the planet
NDCs and Net Zero Pledges | At COP21, commonly referred to as the Paris Climate Accord, nations sent representatives...
Read PostPlan for the Expansion of Smart Meter Infrastructure
Modern SMART Meters | Many buildings in America today still rely on inefficient energy infrastructure, such as older...
Read PostRecycling – how we are doing as a global community; waste-to-energy
Effective waste management strategies for cities include citywide recycling programs, circular economy strategies, as...
Read PostPermanent ban on new coal mines and other sustainability priorities
Strategies for mitigating climate change | What are the best strategies for mitigating global warming? How is the...
Read Post10 Sustainable Technologies Improving Air Quality in Cities
GREEN Tech for Healthy Air | Article by Jane Marsh | Cities are the heart of every global region. They are headquarters...
Read PostShortfall in International GHG Reduction Pledges
Is the World Going to Meet its Climate Targets? There is a substantial shortfall between GHG emission reduction pledges...
Read PostThe Global Fight Against Climate Change; NDCs and Net Zero Targets Worldwide
Nationally Determined Contributions | As part of the ongoing global battle against climate change, almost 200 countries...
Read PostBreakthroughs in Solar Photovoltaic (PV) and Solar Thermal Technology
Solar - the most abundant renewable energy on the planet | Recently there have been dramatic breakthroughs in solar...
Read PostRenewable Energy – Breakthroughs in Wind Energy
Onshore Wind Farms - Cheap and Clean Energy | Onshore wind farms now provide the least expensive form of energy, renewable...
Read PostEconomy vs. the Environment
Economic growth does not have to come at the expense of the environment. Sustainable technologies (such as renewable...
Read PostDesalination – Clean Water for a Thirsty World
The two desalination plants featured below; one in Carlsbad (San Diego county, California - featured photo), and one...
Read Post10 Countries Promoting the use of Electric Vehicles (EVs)
Why Is There A Need For EVs Globally? In its World Energy Outlook, the International Energy Agency identifies pathways...
Read PostSmart City Energy Infrastructure
Updating Infrastructure for Developing Renewable Energy in Cities | People-centered smart cities are cropping up worldwide....
Read PostEVs and the Future of Urban Transit
Electric Vehicle (EV) Infrastructure | What will be done to develop electric vehicle infrastructure? With cars that...
Read PostThe Role of E-mobility Trends in Decarbonizing Transport
Decarbonizing the Transportation Sector with E-mobility | It's no secret that transportation is a major source of...
Read PostPutting a Price on Carbon
Carbon Markets | Carbon cap and trade systems are regulatory policies in which countries, provinces, states, and even...
Read PostReforestation
Deforestation and solutions; including reforestation | Deforestation of our planet, for centuries, has led to issues...
Read PostThe UNFCCC
UN Framework Convention on Climate Change (UNFCCC) – Conference of the Parties | World leaders, dignitaries,...
Read PostCarbon tax – a levy on pollution whose time has come
Defining effective carbon taxes | A carbon tax is a levy in countries and regions on: fossil fuel power plants, oil...
Read PostImproving energy efficiency
Energy Efficiency Foundations for Green Building: Energy Star, LED and CFL Lights, LEED technologies When it comes to...
Read PostDecoupling and Divestment to Reach Sustainability
Economic Growth Without Environmental Impact Decoupling in eco-environmental terms can be defined as economic growth...
Read PostISEGS – A Shining Example of Concentrated Solar Power (CSP)
Ivanpah Solar Electrical Generating System (ISEGS) Ivanpah Solar Electrical Generating System (ISEGS) is a 392 MW solar concentrated...
Read PostCar-sharing and Ride-hailing
Sustainable Commuting | Many ride-sharing fleets are converting to electric cars. Car-sharing (a.k.a. ride-sharing)...
Read PostCalifornia – Current Progress of a Climate Champion
Learning From California's Struggle to Balance Decarbonization With Energy Resilience | Since California passed the...
Read PostA Close Look at San Diego’s HERO Program
San Diego, Green Buildings, HERO Program | The importance of green energy for use in homes and businesses is becoming...
Read Post