Green Building Best Practices
Elements of Modern Green Building
Homeowners and businesses of every size the world over are investing in efficient green building techniques, materials, and technologies. This is a smart investment - for the sake of the environment, and the comfort, well-being, and wallets of the building's occupants.
Elements of modern green building include:
-
Sun Ship, Vauban, Germany energy efficient technologies and best practices in developing a property, such as Leadership in Energy and Environmental Design (LEED) standards.
- energy efficient appliances, windows, and energy & water-saving appliances (such as smart thermostats, LED lighting, and Energy Star products)
- sustainable use of construction materials and building resources
- use of low-carbon steel and concrete
- replacing gas-fired heating, ventilation, and air-conditioning (HVAC) units & boilers with electric (and/ or renewable energy-based) HVAC systems and heat pumps
-
Bullitt Center Seattle quality insulation
- building weatherization strategies
- green and cool roofs
- rainwater collection systems
- solar PV on the rooftop or on the property
- Home Energy Management systems
- as well as other green building solutions (discussed below)
Global Green Building
In its World Energy Outlook, the International Energy Agency identifies pathways for clean energy technological solutions needed to reach global carbon neutrality by 2050. It also details interim goals that will ensure the world is on the path to net zero.
All new buildings should meet modern international thresholds set for high energy efficiency standards, such as the International Energy Conservation Code, and LEED.
Buildings are currently responsible for 39% of global energy related carbon emissions: 28% from operational emissions, from energy needed to heat, cool and power them, and the remaining 11% from materials and construction. [quote from - worldgbc.org/embodied-carbon]
By 2030, in the developed, industrial world, 1/2 of all buildings need to be retrofitted to high energy efficiency standards. Buildings should focus on clean energy and electricity for core functions such as HVAC. In the developing world, the number drops to 1/3 of all buildings that need to be retrofitted with energy efficiency upgrades by 2030.
In order to achieve these efficiency goals, the majority of buildings in cities worldwide must be retrofitted with the latest energy efficiency technologies. The most straightforward path to achieving these building efficiency goals is the electrification of buildings; additionally, the weatherization of buildings is an optimal solution. Many strategies to achieve optimal building energy efficiency are explored below.
Green Building Solutions
Electrification of buildings includes replacing gas furnaces, gas boilers, and conventional HVAC systems fueled by natural gas or heating oil. Conventional HVAC systems should be replaced with electric (or renewable energy-based) heat pumps and electric (and/ or renewable) HVAC units.
Building electrification also involves ensuring that all other major building appliances are replaced with electric or renewable versions, such as electric water heaters or solar water heaters (among other efficient building appliances such as electric heat pumps or geothermal heat pumps).
Readily available renewable energy solutions for buildings, already in consumer markets globally, include solar panels, solar water heaters, and geothermal heat pumps (among others).
Additionally, there is the promising, still in development, hopeful future technology of hydrogen-fueled boilers, and other hydrogen solutions for buildings.
Optimal building weatherization solutions include cutting-edge efficient insulation (detailed below). Additionally, double or triple-pane windows and efficient high-tech smart windows are solutions (also discussed below). Weatherization of buildings involves hardening the exterior of buildings to extremely warm, extremely cold, other inclement, and other extreme weather, as well.
Many building efficiency solutions detailed in this article also qualify as weatherization solutions, including passive building strategies in which buildings are sealed air-tight (examined below towards the end of this article).
In order for buildings to meet current global sustainability standards, new buildings should ideally implement the energy efficiency technologies listed here, and all existing buildings should be retrofitted to include these green building efficiency solutions. Retrofitting existing buildings to meet current energy efficiency standards is one of the most effective measures that can be taken to act on climate globally.
Low Carbon Solutions for Construction
Here is a brief list of strategies to lower the carbon footprint of construction, mostly with the use of low carbon options for traditional building materials. This list focuses on viable low carbon steel and cement, as primary measures to lower the carbon footprint of production processes for traditional building construction.
- Use of recycled building materials. By using recycled concrete, steel, glass, etc... the carbon footprint of construction can be greatly reduced. This low carbon construction strategy has been around for a while. The 2012 London Summer Olympics represented an exemplary effort to create vast areas of buildings with low carbon footprints, in part by using the strategy of using recycled building materials.
-
electric arc furnace Use of electric arc furnaces to produce low carbon steel. This production technique for steel can lower carbon emissions from steel by up to 87%. In the future, the emerging technology of clean hydrogen promises to lower the carbon footprint of steel even further, if electric arc furnaces successfully evolve to be fueled by low carbon hydrogen.
- Another strategy for producing low carbon steel is to combine steel production with carbon capture, which, like hydrogen, is an emerging clean energy technology.
- Use of carbon capture with cement production (cement is the main ingredient in concrete), is yet another low carbon construction strategy. Among many ideas to lower the carbon footprint of concrete production is capturing and using the CO2 released in the production process as a binding element in the concrete production process itself (as seen with the start-up company CarbonCure).
- Substituting the clinker used in concrete production with industrial by-product materials like blast furnace slag and fly ash. Clinker substitutes can lower the carbon footprint of cement production and avoid the carbon emissions generated in the chemical reaction of converting limestone to clinker. [See this link for a list of more clinker substitutes].
- In the future, clean hydrogen might be able to be used to fuel the low carbon concrete production process. Although the above low carbon strategies will still be needed to manage the CO2 emissions generated through the actual chemical reactions in the cement production process.
The low carbon construction techniques listed above are growing in use worldwide. For example, recycled concrete is used in over 30% of construction projects globally. The use of electric arc furnaces (which often use steel scrap and other recycled steels), has grown to over a quarter of global steel production. The use of carbon capture and/ or hydrogen in steel and cement production are still emerging technologies that need further RD&D to become commercially viable.
Energy and water-efficient appliances/ building fixtures
These appliances and technologies are commonly used in sustainable properties:
-
energy-efficient appliances (Energy Star washers & dryers, dishwashers, advanced electric water heaters, etc...)
- energy-efficient HVAC systems, heat pumps
- LED and CFL lighting
- smart thermostats
- green buildings also typically have water-efficient building fixtures such as low-flow toilets and faucets
- solar technologies
- rainwater collection systems
Flooring using composite materials, cold weather epoxy, and/ or radiant heating, can also significantly contribute to building efficiency, and energy savings. Another super-efficient upgrade in modern green buildings is solar water heaters.
Optimal energy-efficient home and building appliances use wi-fi enabled smart appliances linked in with home energy management (HEM) systems. [For more on HEM systems and the appliances that link into these networks, please also see: Improving Energy Efficiency - Green Building].
New construction in the state of California is required to be entirely net-zero energy homes (currently for most new residential construction in the state, expanding to include all new commercial buildings by 2030); as explained in the following article:
The Cottle Zero Energy Home; CA's Zero Net Energy Mandate
Solar PV and solar water heaters
It is helpful for a green building to have its own self-reliant sources of energy. Today, solar photovoltaics (PV) and solar thermal technologies (such as solar water heaters) can do the job excellently.
Recently, there have been dramatic breakthroughs in solar energy technologies that will help further the mainstream use of solar technology, bringing the cost of solar down, and the efficiency of solar up. Shining examples of solar rooftop PV for buildings are in Vauban (Germany's solar settlement) and another is the Bullitt Center in Seattle.
Heat pumps
There are two types of heat pumps - air-source electric heat pumps and geothermal heat pumps. Of the two of them, the geothermal type is based on a renewable energy source. Geothermal heat pumps are piping systems placed below the ground that transfer heat energy from underground outside of a building to augment/ replace HVAC and water heaters inside the building; and act as a central heating and/ or cooling system.
Geothermal heat pumps use the earth's natural energy, the heat energy from underground which is piped in for use with a building's HVAC system and water heaters. Geothermal heat pumps on properties provide energy savings and significantly reduce energy bills. Geothermal heat pumps have routinely cut utility bills in over half while operating with double the efficiency of traditional HVAC systems.
Currently, a less expensive, more popular, option than geothermal heat pumps, and also a clean energy source of building heating and cooling - are electric air source heat pumps. Electric heat pumps are super energy efficient, and may or may not ultimately be powered by renewable energy; depending on the power supply for the local grid's electricity.
At the point of end-use, electric heat pumps provide clean energy, so if the electricity used to power the heat pump is also clean energy, the heat pump is 100% clean and green.
Electric heat pumps are only powered by renewables if there are renewable energy sources for the electricity supplied by the municipal grid where the building is located (or the property itself may be powered by solar panels or other renewable energy sources). Globally, electric heat pumps are projected to be installed in over 20% of new buildings by 2030. Electric heat pump water heaters are also rapidly gaining popularity throughout the world.
Rainwater collection systems
Becoming the standard of new buildings across the country, rainwater collection systems can be built into properties in order to provide free and reliable irrigation to the owner’s garden and for many uses in the household or building.
Rainwater collection systems capture and filter rainwater to store and eventually use in the building which collected the water. Rainwater collection systems can be simple or complex, but either way, they are a great way to save on your water bill and conserve water over the long term.
As rainwater collection systems grow in popularity, the necessary collection tanks, filtration units, and water storage and delivery systems are becoming increasingly available in hardware stores and online.
While usually non-drinkable, the collected, filtered, and stored potable water can safely be used for almost any other household purpose. Implementation of a rainwater collection system results in increased water supply for the given property, reduction in water bills, reduction in use from the municipal water supply, and the reduction of stormwater runoff.
Energy-efficient windows
The efficiency of buildings is influenced by the size, quality, and effectiveness of keeping in heating and air conditioning, of windows installed. Dual-pane windows, and triple-pane windows, increase building HVAC efficiency and reduce energy consumption for HVAC systems.
In addition, it is possible to reduce lighting and heating demands exponentially by the use of cutting-edge smart glass technology with newly installed or retrofitted high-tech windows.
Using electrochromic smart glass for windows enables you to determine the amount of light you may want to block.
Other types of smart window glass include photochromic and thermochromic (responding to light or heat, respectively), which adjust the tint of the glass from opaque to dark in response to varying degrees of sunlight, thus blocking sunlight and cooling interior space. The heat from sunlight is regulated by electrochromic smart glass, reducing dependence on HVAC to heat or cool rooms. Building developers using this glass for use as windows indicate that the glass can reduce HVAC costs by over 25%.
Cool roofs
Cool roofs and green roofs lower surface temperatures on roofs in bright sunlight compared to a conventional roof. This is usually done with greenery, white vinyl, or a solar reflective coating.
Finishing with a cool roof is a highly recommended strategy since, for example, during summer, air conditioning requirements will decrease; leading to reduced energy costs. A cool roof reflects and absorbs solar radiation better than standard roofs.
Efficient insulation
Most people can actually attribute their high energy bills to poor insulation. Insulation technology, both with new and recycled material, has improved dramatically recently. Modern insulation has come a very long way since insulation materials used asbestos.
While insulation with new materials, especially state-of-the-art insulation, still represents a higher efficiency, some insulation materials today are recycled products that are cheap, readily available, and still represent the latest in insulation technology.
Cellulosic fiber, recycled denim, and even some plant and waste materials are now used for insulation, in addition to fiberglass, polyurethane, and other materials. Having a properly insulated building will reduce energy costs.
Please read: mit.edu/how-make-cities-more-energy-efficient - (the following quote is from this article) "...many buildings would benefit the most from such steps as adding insulation, sealing leaky windows and doors, and replacing older single-pane windows with newer double-pane versions..."
Sustainable building materials
Builders are increasingly turning to advanced framing techniques to help reduce their overall building costs and to significantly lower their carbon footprint. Advanced construction still has the same overall structural stability and integrity as most standard construction techniques.
However, with advanced framing techniques, up to a third less lumber is used, and framings are quicker to assemble. The cost savings of needing fewer building materials (and less time for construction) are then put toward the incorporation of greater insulation (and other green building strategies), which can lead to overall energy savings, as well.
Many construction material warehouses and retail outlets worldwide are now stocking reclaimed materials for new-builds and home repairs. Recycled and reclaimed materials are commonly used in advanced green buildings. These materials include lumber, recycled plastic, recycled glass, and composite materials such as epoxy.
Not only does the use of reclaimed materials and building supplies prevent the unnecessary use of natural resources by extending the useful life of building materials; but the products are cheaper across the board (while still maintaining quality).
For ideas on organically sustainable alternative building materials (to use in place of traditional building materials), see:
Eco-conscious Building Materials
Increasingly common features used to create today’s green buildings are low maintenance materials for exteriors and outdoor features.
For example, the use of fiber-cement siding immediately rules out the chance of rot, while at the same time greatly reducing the frequency of painting/ touching-up. Likewise, the use of composite materials for decking and other outdoor features reduces the need for occasional resealing and varnishing - excellent for the pocket and the environment.
LEED (Leadership in Energy and Environmental Design)
In order to be LEED-certified, a building must maximize energy efficiency, following these basic guidelines for LEED buildings:
“The five critical areas of focus [for LEED-certified buildings], as laid out by the USGBC, are sustainable site development, water savings, energy efficiency, materials selection, and indoor environmental quality.
Sustainable site development involves, whenever possible, the reuse of existing buildings and the preservation of the surrounding environment. The incorporation of earth shelters, roof gardens, and extensive planting throughout and around buildings are encouraged.
Water is conserved by a variety of means including the cleaning and recycling of gray (previously used) water and the installation of building-by-building catchments for rainwater. Water usage and supplies are monitored.
Energy efficiency can be increased in a variety of ways, for example, by orienting buildings to take full advantage of seasonal changes in the sun’s position and by the use of diversified and regionally appropriate energy sources, which may—depending on geographic location—include solar, wind, geothermal, biomass, water, or natural gas.” [quote from - britannica.com] - [SEE MORE ON LEED BUILDING STANDARDS FROM - britannica.com/technology/LEED-standards - click the link for more LEED certification requirements]
ALSO SEE>>> Improving Energy Efficiency - Green Building
Vauban, Germany's solar settlement; passive building
A community of homes and buildings that represent the most energy-efficient group of properties in the world- Vauban, Germany, an ultra-sustainable city district in Freiburg.
Vauban represents the cutting-edge of sustainability in terms of green building.
New homes and buildings built with maximizing sustainability in mind to create the absolutely greenest, most efficient, most sustainable properties, are plus-energy homes and buildings (like those in Vauban, Germany, that produce more energy than they use).
Most homes in the solar settlement of Vauban, Germany get energy for their own home and for the municipality of Vauban from rooftop solar panels (and from energy generated from biomass in a local combined heat and power plant).
Another European city that employs passive home building standards for all commercial building and construction of residential homes in the city is Vaxjo, Sweden.
Ideal buildings in terms of energy efficiency and sustainability are passive design, zero net energy buildings. The ideal sustainable home/ building generates its own energy, either via solar panels on the property, community solar, a geothermal heat pump, and/ or works off of a clean energy micro-grid.
Here's an article about the Solar Settlement in Vauban, Germany from Smart Cities Dive-
"Public energy and heat are generated by a highly efficient woodchip-powered combined heat and power generator connected to a district heating grid. 42 building units [in the Solar Settlement] are of the Passivhaus [passive building design] standard...houses adhere to a "plus-energy" standard, producing more energy than they use, with surpluses sold back to the city grid and profits split between each household." [quote from - smartcitiesdive.com/ex/sustainablecitiescollective/words-most-successful-model-sustainable-urban-development]
Here's detailed information on passive building. Passive building design principles include buildings that-
- Employ continuous insulation throughout [the building's] entire envelope without any thermal bridging.
- The building envelope is extremely airtight, preventing infiltration of outside air and loss of conditioned air.
- Employ high-performance windows (double or triple-paned windows depending on climate and building type) and doors - solar gain is managed to exploit the sun's energy for heating purposes in the heating season and to minimize overheating during the cooling season.
- Uses some form of balanced heat- and moisture-recovery ventilation.
- Uses a minimal space conditioning system." [quote from - phius.org/what-is-passive-building/passive-house-principles]
See these articles on two of the cities that are featured in this article for employing passive building standards when constructing all commercial buildings and residences in the city:
Vauban, Germany - The Greenest City in Europe
and
Fossil-free Vaxjo - Passivehouse construction standards
See the following articles on the latest green building and related energy efficiency technologies:
LEDs, CFLs: Lighting For a Brighter Future
Energy Star - an international standard
Demand response: improving energy efficiency
Smart meters - a more efficient use of utilities
Click & read:
The Bullitt Center Seattle: The World’s Greenest Building
GCT Featured Articles
Oslo, Norway – Eco-Capital
Oslo: Net Zero Future | Oslo has fleets of clean mass public transit - trams, electric buses and ferries - powered...
Read PostRegenerative Agriculture
Regenerative agriculture creates carbon sinks; turning farms into healthy ecosystems that sequester carbon with plentiful...
Read PostSustainable City – CHICAGO
Chicago might not be widely known as a green city, however, the city has a vast network of sustainable mass public transit...
Read PostVauban and the Plus-Energy Sun Ship
Vauban is an exemplary sustainable town and a zero-emission district. Most energy for buildings is from rooftop solar...
Read PostClimate Solution – Sustainable Agriculture
Benefits of Sustainable Agriculture | Sustainable ag. turns farms into thriving biodiverse lands that produce...
Read PostAustin, Texas – A Sustainable City
Eco-friendly Capital | Austin is emerging as a leader in renewable energy, community solar, and LEED building efficiency...
Read Post12+ Ways You Can Help the Environment
Lower your carbon footprint, save energy, and help the environment. Here are 12+ actions for sustainable individuals:...
Read Post10 Ways to Reduce Food Waste
by Jane Marsh | Significant amounts of food waste originate from cities. Urbanites can use food waste reduction methods...
Read PostModern Sustainable Waste Management Technologies
5 Ways for SMART Cities to Implement Sustainable Waste Management | by Jane Marsh | Cities are implementing zero-waste...
Read Post5 Categories of Change in Climate
Climate change is adversely affecting all parts of the earth. There have been dramatic increases in greenhouse gas emissions...
Read Post10 IoT and Sustainability Technologies for Smart Cities
Technologies Benefit Sustainable Smart Cities | by Jane Marsh | As the conversation around greenhouse gas emissions...
Read PostProfiles in Sustainable Cities – San Diego, California
Sustainable cities, like San Diego, have eco-city designs that prioritize consideration of social, economic, and environmental...
Read PostOffshore Wind Farms in the United States | Block Island Leads the Way
First of many US offshore wind farms | The United States' 1st operational offshore wind farm is the Block Island...
Read PostClean Energy Jobs are UP, and RE cost is down
Clean Energy JOBS | The future of employment in the energy sector is in clean energy, energy efficiency, and renewable...
Read PostUsing Technology to Provide Clean Water to Cities
How Technology Can Help Cities Avoid Another Flint Water Crisis | Article by Jane Marsh | The green movement is influencing...
Read PostHow Safe & Clean is Nuclear ☢️ Energy?
When looking at climate solutions for clean energy generation, it is prudent to look at all clean energy sources. Nuclear...
Read PostKamuthi Solar Project, Bhadla Solar Park; and the largest solar PV farms in India, China, and other countries
Featuring over 2.5 million individual solar PV modules, and on 2,500 acres, the Kamuthi Solar Power Project supplies...
Read PostMicrogrids spread across Africa
Developing Microgrids | As African nations push for rural electrification, many look to microgrids as a sustainable...
Read PostFuture Generations of Batteries
Next generation li-ion batteries | Next-gen lithium-ion (li-ion) batteries can charge quickly, are rechargeable,...
Read PostClean Hydrogen Power
Hydrogen (H2) and the Clean Energy Transition | Hydrogen created with clean energy is one of the most promising...
Read PostNuclear – necessary energy
Both nuclear and renewable energy are needed in the global energy mix to help fight climate change. In order to cut...
Read PostCOP21 – good news for the planet
NDCs and Net Zero Pledges | At COP21, commonly referred to as the Paris Climate Accord, nations sent representatives...
Read PostPlan for the Expansion of Smart Meter Infrastructure
Modern SMART Meters | Many buildings in America today still rely on inefficient energy infrastructure, such as older...
Read PostRecycling – how we are doing as a global community; waste-to-energy
Effective waste management strategies for cities include citywide recycling programs, circular economy strategies, as...
Read PostPermanent ban on new coal mines and other sustainability priorities
Strategies for mitigating climate change | What are the best strategies for mitigating global warming? How is the...
Read Post10 Sustainable Technologies Improving Air Quality in Cities
GREEN Tech for Healthy Air | Article by Jane Marsh | Cities are the heart of every global region. They are headquarters...
Read PostShortfall in International GHG Reduction Pledges
Is the World Going to Meet its Climate Targets? There is a substantial shortfall between GHG emission reduction pledges...
Read PostThe Global Fight Against Climate Change; NDCs and Net Zero Targets Worldwide
Nationally Determined Contributions | As part of the ongoing global battle against climate change, almost 200 countries...
Read PostBreakthroughs in Solar Photovoltaic (PV) and Solar Thermal Technology
Solar - the most abundant renewable energy on the planet | Recently there have been dramatic breakthroughs in solar...
Read PostRenewable Energy – Breakthroughs in Wind Energy
Onshore Wind Farms - Cheap and Clean Energy | Onshore wind farms now provide the least expensive form of energy, renewable...
Read PostEconomy vs. the Environment
Economic growth does not have to come at the expense of the environment. Sustainable technologies (such as renewable...
Read PostDesalination – Clean Water for a Thirsty World
The two desalination plants featured below; one in Carlsbad (San Diego county, California - featured photo), and one...
Read Post10 Countries Promoting the use of Electric Vehicles (EVs)
Why Is There A Need For EVs Globally? In its World Energy Outlook, the International Energy Agency identifies pathways...
Read PostSmart City Energy Infrastructure
Updating Infrastructure for Developing Renewable Energy in Cities | People-centered smart cities are cropping up worldwide....
Read PostEVs and the Future of Urban Transit
Electric Vehicle (EV) Infrastructure | What will be done to develop electric vehicle infrastructure? With cars that...
Read PostThe Role of E-mobility Trends in Decarbonizing Transport
Decarbonizing the Transportation Sector with E-mobility | It's no secret that transportation is a major source of...
Read PostPutting a Price on Carbon
Carbon Markets | Carbon cap and trade systems are regulatory policies in which countries, provinces, states, and even...
Read PostReforestation
Deforestation and solutions; including reforestation | Deforestation of our planet, for centuries, has led to issues...
Read PostThe UNFCCC
UN Framework Convention on Climate Change (UNFCCC) – Conference of the Parties | World leaders, dignitaries,...
Read PostCarbon tax – a levy on pollution whose time has come
Defining effective carbon taxes | A carbon tax is a levy in countries and regions on: fossil fuel power plants, oil...
Read PostImproving energy efficiency
Energy Efficiency Foundations for Green Building: Energy Star, LED and CFL Lights, LEED technologies When it comes to...
Read PostDecoupling and Divestment to Reach Sustainability
Economic Growth Without Environmental Impact Decoupling in eco-environmental terms can be defined as economic growth...
Read PostISEGS – A Shining Example of Concentrated Solar Power (CSP)
Ivanpah Solar Electrical Generating System (ISEGS) Ivanpah Solar Electrical Generating System (ISEGS) is a 392 MW solar concentrated...
Read PostCar-sharing and Ride-hailing
Sustainable Commuting | Many ride-sharing fleets are converting to electric cars. Car-sharing (a.k.a. ride-sharing)...
Read PostCalifornia – Current Progress of a Climate Champion
Learning From California's Struggle to Balance Decarbonization With Energy Resilience | Since California passed the...
Read PostA Close Look at San Diego’s HERO Program
San Diego, Green Buildings, HERO Program | The importance of green energy for use in homes and businesses is becoming...
Read Post
Please let us here at Green City Times know what you think in a comment; and we’ll try and answer any questions as well.
Please also visit our other blog at https://greencitytimes.blogspot.com
I’m amazed, I have to admit. Rarely do I come across a blog that’s equally educative and entertaining,
and let me tell you, you’ve hit the nail on the head.
The issue is something not enough men and women are speaking intelligently about.
I’m very happy I came across this during my
search for something relating to this.