Clean and GREEN H2 and Carbon Capture |
Hydrogen (H2) and the Clean Energy Transition |
Hydrogen created with clean energy is one of the most promising emerging energy technological developments to fill the rising global demand for clean low carbon and emission-free energy sources.
The recent global societal shift towards environmental sustainability, and the global imperative for climate action, have significantly altered energy consumption patterns.
Clean and renewable energy companies are booming. Solar companies have experienced their highest production and distribution rates, and the national use of renewable power, such as solar and wind, is increasing.
In addition to solar and wind, other emerging next-generation clean energy technologies, such as hydrogen and carbon capture, are also having breakthrough years. Read more below about hydrogen produced by clean energy (either H2 produced with renewable energy or through energy generated from steam methane reforming along with the use of carbon capture).
Domestic Energy Production Challenges and a Solution - Hydrogen
Around 80% of America's energy production and consumption (with the transportation sector included) is derived from non-renewable sources. Finite fossil fuel resources (coal, oil, and gas) create atmospheric pollution during combustion (GHGs and other pollution).
GHGs alter the planet's natural temperature control process, degrading the global ecosystem. On the other hand, hydrogen represents clean energy; as hydrogen, itself, doesn't release carbon or contribute to atmospheric pollution. With clean hydrogen, there aren't climate-changing emissions in the hydrogen production or combustion process - when the hydrogen is created with clean energy sources.
See below for a comparison of steam methane reforming (hydrogen produced with natural gas) vs. steam methane reforming + carbon capture (low emission solution) vs. hydrogen produced using renewable energy (zero emissions).
Hydrogen produced with clean energy is a zero or low carbon emissions solution for energy storage and transportation.
Right now, hydrogen can be used as a fuel source for cars and buses (see a description of hydrogen fuel cells below) - and in the future, H2 will be fuel for long-haul shipping, heavy-duty trucks, and, hopefully, long-haul aviation.
Hydrogen also represents a potential zero or low carbon emissions fuel source for HVAC in buildings; a zero carbon emissions solution for building heating.
Clean hydrogen potentially performs all of these functions without contributing to global warming, air pollution, or climate change (a zero carbon emissions solution in the case of green hydrogen - whereas blue hydrogen represents a low carbon solution) [- see below for a description of the hydrogen production color spectrum].
The actual combustion of hydrogen, itself, for energy, generates zero pollution and produces no carbon emissions.
What is Carbon Capture and How Can It Be Used With H2?
As the demand for zero and low carbon emissions energy sources rises, environmental engineers and scientists develop new clean production technologies. Carbon capture and storage (CCS) decreases carbon emissions in the process of producing hydrogen in natural gas power plants (as well as in energy generation from other fossil fuels, and other industrial processes).
CCS + H2 production generates reliable low carbon power. After capturing the carbon emissions from methane reforming (in the blue hydrogen production process, described below), partial oxidation restructures the elements as they flow through a catalyst bed, creating clean hydrogen.
Though carbon capture cannot directly generate hydrogen for sustainable energy uses, steam methane reforming in natural gas power plants can.
Steam methane reforming in natural gas power plants combines methane gas and steam with a catalyst (such as nickel). The process produces hydrogen, carbon monoxide, and a relatively small amount of carbon dioxide (smaller than the natural gas energy-generating process).
Carbon capture can be used to capture CO2 from natural gas combustion, as well as the methane reforming cycle - a low carbon process to create clean hydrogen.
Environmental scientists and engineers develop carbon capture technology to reduce atmospheric pollution from manufacturing facilities and power plants. Carbon capture technologies can absorb 90% of carbon emissions, significantly decreasing GHGs.
In pre-combustion carbon capture, fuel sources are gasified and the carbon is captured. CO2 is captured before any combustion. Post-combustion carbon capture separates carbon dioxide from emissions produced by fossil fuel combustion. Post-combustion CCS is primarily used in power plants, and pre-combustion CCS is primarily used in other industrial processes.
The collection of carbon dioxide emissions travels to an alternate processing facility where CO2 can be stored or repurposed, decreasing adverse ecological effects.
Hydrogen Production - 3 H2 Colors
Engineers have developed various methods of hydrogen production and differentiated them on a color spectrum. When companies create H2 from methane reformation without collecting carbon outputs, they generate grey hydrogen. This process releases 9.3 kilograms of GHGs for every kilogram of hydrogen.
In order to create a sustainable, low carbon solution for future hydrogen production, the world must transition away from grey hydrogen to environmentally-friendly hydrogen production methods (grey hydrogen currently represents a vast majority of global hydrogen production).
Companies can capture carbon emissions in the methane reformation process, storing them to preserve the atmosphere, and producing blue hydrogen. The CCS process can collect up to 90% of the CO2 emissions and place them underground for climate change prevention. The process is significantly more sustainable than grey hydrogen production.
The zero carbon emissions hydrogen production process uses renewable energy, electrolyzers, and water, generating green hydrogen. Advanced technological devices (electrolyzers) separate hydrogen (H2) from H2O using electrolysis. Solar panels and wind turbines power the systems, creating zero emissions throughout the practice.
Green hydrogen is the most sustainable version of the energy source. Industries can power their production using a 100% clean energy source (green H2), eliminating atmospheric pollution from the process.
The process of producing green H2 is much cleaner than the conventional, ecologically degrading hydrogen development practice of methane reforming. Traditionally, energy professionals generate H2 from fossil fuel sources (grey H2), generating 830 million tons of GHGs annually.
Producing green hydrogen from zero-emission sustainable sources can enhance its efficiency while reducing atmospheric degradation. Producing blue hydrogen still uses methane reforming, but by also using CCS technology, a cleaner method of producing hydrogen is being used.
Hydrogen Fuel Cell Energy
The process of producing hydrogen can supply fuel for hydrogen-powered fuel cells, creating an alternate clean energy source for energy storage and transportation. The cells work like batteries, running off of the hydrogen inside of them. They contain one positive and one negative electrode, generating the cathode and anode.
The two electrodes contain an electrolyte. Hydrogen fuels the anode, and air powers the cathode, separating molecules into protons and electrons. The free electrons travel through a designated circuit, creating electricity. Excess protons move to the cathode, combining with oxygen and generating water as the output. Pure water is a sustainable alternative to other GHGs, and water is the only emission in hydrogen power generation.
Hydrogen fuel cells are used in energy storage, hydrogen buses, and other hydrogen vehicles as a clean power source, and in buildings for clean HVAC. Hydrogen buses are still in the demonstration phase of research & development.
Read more about Europe's extensive effort to expand the hydrogen bus presence on the continent here.
In an effort to create exceptional energy efficient public transit, and superior standards of environmentally clean public transportation systems, Europe has spent the last couple of decades testing fuel cell buses that utilize hydrogen fuel cells in lieu of traditional fossil fuel sources; such as diesel.
The only emissions from hydrogen buses powered by fuel cells are water vapor.
Homeowners and residential building owners can also potentially utilize hydrogen fuel cells, shrinking their carbon footprints. Hopefully, hydrogen will be used in large home appliances in the future, such as electric HVAC units, electric furnaces, electric boilers, and other applications. Adopting electric home appliances can aid the transition away from fossil fuel-derived power sources.
You can compare your carbon footprint and utility savings by first receiving an energy consultation. A professional energy consultant can unveil your property's compatibility with hydrogen fuel cell power sources. They can also recommend energy efficiency practices, reducing your carbon footprint over time.
Benefits of CCS, Electricity, and Hydrogen Fuel Sourcing
President Biden set a national carbon-neutrality goal upon entering office. Meeting the objective requires a restructuring of the energy sector. Both hydrogen and carbon capture represent solutions to accelerate the low-carbon, clean energy transition. Biden plans on developing a carbon-neutral electric grid, sourcing 100% of U.S. electricity from clean energy sources.
Although still fairly expensive, clean hydrogen represents a highly efficient low-carbon power alternative. "Hydrogen can be re-electrified in fuel cells with efficiencies up to 50%, or alternatively burned in combined cycle gas power plants (efficiencies as high as 60%)." [Quote from - energystorage.org/technologies/hydrogen-energy-storage]. We can effectively develop a carbon-neutral nation by diversifying our electricity sources.
Green and blue hydrogen development can provide sustainable support for the electric grid, be used in the transportation sector or energy storage (in hydrogen fuel cells), and even as a low carbon solution for HVAC units and other major appliances in buildings.
CCS with hydrogen development (producing blue hydrogen) represents a low carbon source of clean hydrogen, while green hydrogen production represents a zero carbon source.
We can generate clean energy while eliminating further atmospheric degradation when we target significant pollution producers and replace dirty energy with clean energy sources like electricity and hydrogen. Both electric and hydrogen buses represent clean energy solutions.
Utilizing electric vehicles (EVs) can increase society's access to emission-less power. If you want to drive with zero emissions, you also have the option of choosing a hydrogen fuel cell car (although, currently, an EV represents the less expensive zero emissions option). With both electricity and hydrogen, ultimately the process of generating the energy must come from a low carbon or zero-emissions source in order to truly be a clean energy solution.
The process of using electricity and/ or hydrogen in buildings and transportation also reduces the enhanced greenhouse effect by decreasing atmospheric emissions. When we capture the elements before they reach the environment, we prevent the overproduction and entrapment of heat (as in blue hydrogen). Green hydrogen, or electricity powered by renewables, shrinks the carbon footprint of energy production closer to zero.
Enhancing Urban Sustainability
Many cities have recently increased their sustainability standards, regulating carbon emissions and pollution production processes. They are electrifying transportation, and buildings, requiring cleaner energy (as in renewable portfolio standards and clean energy standards).
CCS used in combination with hydrogen power (blue hydrogen) production can support urban transformations towards clean, low-carbon energy. Green hydrogen power production can support the urban energy transition completely away from fossil fuel reliance towards zero-emission energy.
Clean Energy Transition in the United States
President Biden has influenced sustainable, clean energy sourcing by establishing ambitious sustainability standards in the U.S. - such as net zero by 2050, and a carbon-neutral electricity grid by 2035. The Biden administration also seeks to reduce greenhouse gases (GHGs) by 50-52% by 2030 (from 2005 levels). These initiatives are parts of the Build Back Better (BBB) plan. Parts of the original BBB plan (that have investments in clean energy, hydrogen, and carbon capture) have passed the U.S. Congress in smaller Acts.
The Build Back Better plan (which has been divided into a few different, smaller, Acts in order to pass Congress in smaller sections), invests in American society and the American clean energy sector. Originally, the BBB plan proposed trillions of funding dollars for the United States' infrastructure (as well as other programs that benefit society). The sections of the BBB plan which have passed Congress include funding for the clean energy industry, promoting technological advancements and system alterations.
The Build Back Better plan (the parts that have passed Congress) includes funding for hydrogen and carbon capture technological research, development, and deployment (RD&D), as well as RD&D for a variety of other next-generation clean energy technologies.
Parts of the BBB climate-related plan also include funding for clean energy infrastructure, EV charging infrastructure, modernizing the US electrical grid, and financial incentives such as tax credits for renewable energy (in addition to more clean energy programs). When the US diversifies production and use of clean energy (including clean hydrogen and carbon capture), national greenhouse gas emissions are effectively reduced.
Fortunately, Congress did end up passing parts of the original BBB plan that help invest in clean energy - the Infrastructure Investment and Jobs Act (IIJA) and the Inflation Reduction Act. The IIJA invests over $65 billion in power infrastructure and clean energy transmission, including key technologies like carbon capture and hydrogen. The IIJA was passed by Congress in November 2021, providing part of the original BBB.
Although at a much lower funding level than the original BBB proposed, the IIJA invests $550 billion in new spending over five years to bolster the nation's infrastructure, public mass transit, broadband, water, energy, environmental concerns, EV charging infrastructure, and electric & low-emission school buses.
In August 2022, Congress passed the Inflation Reduction Act, investing an additional $369 billion in various climate and energy programs, a significant part of the BBB plan.
The IIJA has investments for clean energy technological measures such as electric vehicles (including electric buses), and grid modernization, in its over $1 trillion in infrastructure investments. Hydrogen and carbon capture investments are in the IIJA along with clean energy infrastructure investments.
The Inflation Reduction Act also invests in clean energy technology development and deployment through measures such as tax credits for solar and wind energy, as well as hydrogen and carbon capture.
"[The Inflation Reduction Act has] Tax breaks for electric vehicles. Huge incentives to ramp up carbon-capture facilities, urge green hydrogen production and boost U.S. manufacturing of solar panels, wind turbines and next-generation batteries. The landmark Inflation Reduction Act...includes $369 billion in climate- and energy-related funding — much of it aimed at high-tech solutions to help nudge the world’s biggest historical emitter toward a greener future." FROM - washingtonpost.com/climate-solutionnature-climate-solutions-inflation-reduction-act
In August 2022, Congress also passed the CHIPS and Science Act, which "..will boost efforts to manufacture more zero-carbon technology in America, establish a new federal office to organize clean-energy innovation, and direct billions of dollars toward disaster-resilience research." [- quote from theatlantic.com/chips-act-climate-bill].
The CHIPS ACT provides funding for scientific and technological research into clean energy technologies, nanotechnologies, artificial intelligence, and quantum computing - all technologies which can benefit climate and energy programs.
Both the development of hydrogen technologies and carbon capture technologies have bipartisan support. The technological developments discussed in this article are set to continue advancing this decade (a bit more slowly than if the full BBB passed).
Between the IIJA and Inflation Reduction Act, as well as the CHIPS Act, a significant amount of investment is being made in climate and energy programs.
Article by Jane Marsh
Author bio:
Jane works as an environmental and energy writer. She is also the founder and editor-in-chief of
GCT Featured Articles
Oslo, Norway – Eco-Capital
Oslo: Net Zero Future | Oslo has fleets of clean mass public transit - trams, electric buses and ferries - powered...
Read PostRegenerative Agriculture
Regenerative agriculture creates carbon sinks; turning farms into healthy ecosystems that sequester carbon with plentiful...
Read PostSustainable City – CHICAGO
Chicago might not be widely known as a green city, however, the city has a vast network of sustainable mass public transit...
Read PostVauban and the Plus-Energy Sun Ship
Vauban is an exemplary sustainable town and a zero-emission district. Most energy for buildings is from rooftop solar...
Read PostClimate Solution – Sustainable Agriculture
Benefits of Sustainable Agriculture | Sustainable ag. turns farms into thriving biodiverse lands that produce...
Read PostAustin, Texas – A Sustainable City
Eco-friendly Capital | Austin is emerging as a leader in renewable energy, community solar, and LEED building efficiency...
Read Post12+ Ways You Can Help the Environment
Lower your carbon footprint, save energy, and help the environment. Here are 12+ actions for sustainable individuals:...
Read Post10 Ways to Reduce Food Waste
by Jane Marsh | Significant amounts of food waste originate from cities. Urbanites can use food waste reduction methods...
Read PostModern Sustainable Waste Management Technologies
5 Ways for SMART Cities to Implement Sustainable Waste Management | by Jane Marsh | Cities are implementing zero-waste...
Read Post5 Categories of Change in Climate
Climate change is adversely affecting all parts of the earth. There have been dramatic increases in greenhouse gas emissions...
Read Post10 IoT and Sustainability Technologies for Smart Cities
Technologies Benefit Sustainable Smart Cities | by Jane Marsh | As the conversation around greenhouse gas emissions...
Read PostProfiles in Sustainable Cities – San Diego, California
Sustainable cities, like San Diego, have eco-city designs that prioritize consideration of social, economic, and environmental...
Read PostOffshore Wind Farms in the United States | Block Island Leads the Way
First of many US offshore wind farms | The United States' 1st operational offshore wind farm is the Block Island...
Read PostClean Energy Jobs are UP, and RE cost is down
Clean Energy JOBS | The future of employment in the energy sector is in clean energy, energy efficiency, and renewable...
Read PostUsing Technology to Provide Clean Water to Cities
How Technology Can Help Cities Avoid Another Flint Water Crisis | Article by Jane Marsh | The green movement is influencing...
Read PostHow Safe & Clean is Nuclear ☢️ Energy?
When looking at climate solutions for clean energy generation, it is prudent to look at all clean energy sources. Nuclear...
Read PostKamuthi Solar Project, Bhadla Solar Park; and the largest solar PV farms in India, China, and other countries
Featuring over 2.5 million individual solar PV modules, and on 2,500 acres, the Kamuthi Solar Power Project supplies...
Read PostMicrogrids spread across Africa
Developing Microgrids | As African nations push for rural electrification, many look to microgrids as a sustainable...
Read PostFuture Generations of Batteries
Next generation li-ion batteries | Next-gen lithium-ion (li-ion) batteries can charge quickly, are rechargeable,...
Read PostClean Hydrogen Power
Hydrogen (H2) and the Clean Energy Transition | Hydrogen created with clean energy is one of the most promising...
Read PostNuclear – necessary energy
Both nuclear and renewable energy are needed in the global energy mix to help fight climate change. In order to cut...
Read PostCOP21 – good news for the planet
NDCs and Net Zero Pledges | At COP21, commonly referred to as the Paris Climate Accord, nations sent representatives...
Read PostPlan for the Expansion of Smart Meter Infrastructure
Modern SMART Meters | Many buildings in America today still rely on inefficient energy infrastructure, such as older...
Read PostRecycling – how we are doing as a global community; waste-to-energy
Effective waste management strategies for cities include citywide recycling programs, circular economy strategies, as...
Read PostPermanent ban on new coal mines and other sustainability priorities
Strategies for mitigating climate change | What are the best strategies for mitigating global warming? How is the...
Read Post10 Sustainable Technologies Improving Air Quality in Cities
GREEN Tech for Healthy Air | Article by Jane Marsh | Cities are the heart of every global region. They are headquarters...
Read PostShortfall in International GHG Reduction Pledges
Is the World Going to Meet its Climate Targets? There is a substantial shortfall between GHG emission reduction pledges...
Read PostThe Global Fight Against Climate Change; NDCs and Net Zero Targets Worldwide
Nationally Determined Contributions | As part of the ongoing global battle against climate change, almost 200 countries...
Read PostBreakthroughs in Solar Photovoltaic (PV) and Solar Thermal Technology
Solar - the most abundant renewable energy on the planet | Recently there have been dramatic breakthroughs in solar...
Read PostRenewable Energy – Breakthroughs in Wind Energy
Onshore Wind Farms - Cheap and Clean Energy | Onshore wind farms now provide the least expensive form of energy, renewable...
Read PostEconomy vs. the Environment
Economic growth does not have to come at the expense of the environment. Sustainable technologies (such as renewable...
Read PostDesalination – Clean Water for a Thirsty World
The two desalination plants featured below; one in Carlsbad (San Diego county, California - featured photo), and one...
Read Post10 Countries Promoting the use of Electric Vehicles (EVs)
Why Is There A Need For EVs Globally? In its World Energy Outlook, the International Energy Agency identifies pathways...
Read PostSmart City Energy Infrastructure
Updating Infrastructure for Developing Renewable Energy in Cities | People-centered smart cities are cropping up worldwide....
Read PostEVs and the Future of Urban Transit
Electric Vehicle (EV) Infrastructure | What will be done to develop electric vehicle infrastructure? With cars that...
Read PostThe Role of E-mobility Trends in Decarbonizing Transport
Decarbonizing the Transportation Sector with E-mobility | It's no secret that transportation is a major source of...
Read PostPutting a Price on Carbon
Carbon Markets | Carbon cap and trade systems are regulatory policies in which countries, provinces, states, and even...
Read PostReforestation
Deforestation and solutions; including reforestation | Deforestation of our planet, for centuries, has led to issues...
Read PostThe UNFCCC
UN Framework Convention on Climate Change (UNFCCC) – Conference of the Parties | World leaders, dignitaries,...
Read PostCarbon tax – a levy on pollution whose time has come
Defining effective carbon taxes | A carbon tax is a levy in countries and regions on: fossil fuel power plants, oil...
Read PostImproving energy efficiency
Energy Efficiency Foundations for Green Building: Energy Star, LED and CFL Lights, LEED technologies When it comes to...
Read PostDecoupling and Divestment to Reach Sustainability
Economic Growth Without Environmental Impact Decoupling in eco-environmental terms can be defined as economic growth...
Read PostISEGS – A Shining Example of Concentrated Solar Power (CSP)
Ivanpah Solar Electrical Generating System (ISEGS) Ivanpah Solar Electrical Generating System (ISEGS) is a 392 MW solar concentrated...
Read PostCar-sharing and Ride-hailing
Sustainable Commuting | Many ride-sharing fleets are converting to electric cars. Car-sharing (a.k.a. ride-sharing)...
Read PostCalifornia – Current Progress of a Climate Champion
Learning From California's Struggle to Balance Decarbonization With Energy Resilience | Since California passed the...
Read PostA Close Look at San Diego’s HERO Program
San Diego, Green Buildings, HERO Program | The importance of green energy for use in homes and businesses is becoming...
Read Post