Sustainability | Renewable Energy

Future Generations of Batteries

What are future generations of batteries going to be?



Next-Generation Li-ion Batteries

 

Next-gen lithium-ion (li-ion) batteries can charge quickly, are rechargeable, have a higher capacity, and are more cost-efficient than previous battery generations.

New li-ion battery varieties have increased energy efficiency, often while also reducing costs. Varieties of next-gen li-ion batteries are already currently in the marketplace, and emerging li-ion technologies with even greater efficiency and capacity are being developed.

New varieties of advanced li-ion batteries maintain a stable capacity for 20+ years. 

The most common type of high-capacity, widely used, advanced batteries being developed today are li-ion batteries made in combination with other metals. Developing advanced batteries with a diverse mixture of elements results in creating a unique battery technology (like li-ion cobalt oxide, which is frequently used today in portable devices - cell phones, laptops, etc...).

[Another metal commonly used in batteries for a wide variety of products and electric vehicles (EVs), and often combined with other metals and elements - is nickel. "Nickel has long been widely used in batteries, most commonly in nickel-cadmium and in the longer-lasting nickel-metal hydride rechargeable batteries...".]


Emerging Advanced Battery Technologies

 

Below are a few other examples of emerging advanced li-ion next-gen battery technologies (and other battery chemistries) currently in the market (but much less widely commercially available than li-ion cobalt varieties).

Lithium-iron phosphate batteries are currently a popular battery solution for some stationary battery applications. [Here is a YouTube video on li-iron phosphate batteries, also known as LFP batteries]

Other advanced battery technologies currently in development include:

> li-ion silicon

> li-ion manganese oxide

> li-ion sulfur

> li-ion solid state

> sodium-ion

> graphene-based batteries

These promising, emerging batteries based on advanced li-ion chemistry and other chemistries tend to be more efficient than the products of previous li-ion battery generations. These batteries tend to be lighter, longer-lasting, and often still rechargeable, while also developed to charge quickly; and they tend to have a higher energy capacity.

Each new emerging advanced battery type mentioned here has its own set of reasons for still being in research & development (R&D). Cutting-edge next-gen batteries based on the latest battery chemistries are emerging into the mass marketplace; as they transition from R&D, beta-testing, and demonstration phases.


Emerging advanced next-gen li-ion batteries (and other battery chemistries) are revolutionizing battery technology for:

- smartphones, computers, tablets

- EVs

- grid energy storage

- commercial/ municipal buildings

- RVs, boats

- aerospace applications, other industrial applications, and much more.


Summation of Current Advanced Lithium-based Battery Technologies and Other Emerging Technologies

 

Widely commercially available advanced li-ion batteries (such as li-ion cobalt oxide, or the promising LFP batteries gaining popularity for home energy storage and EVs) remain the most prominent high-capacity batteries widely available in today’s market.

Advanced batteries are produced for smartphones, laptops, and EVs, as well as small-scale (residential/ commercial building), and large-scale (grid, industrial) energy storage.

Sodium-ion batteriesgraphene-based batteries, and other emerging battery technologies are sourced from cheaper, more abundant, more environmentally friendly materials than lithium.

These emerging battery technologies, as well as flow batteries and air batteries, could produce a more efficient battery with possibilities for long-term energy storage and applications for a wide range of products - if R&D in these technologies yields batteries that can be widely commercially marketed.

Lithium-vanadium phosphate batteries are a next-generation battery solution that shows promise; as they can extend the range of EVs, for example. These batteries potentially have greater power than advanced batteries found in many EVs today, but also greater safety than the batteries found in smartphones and laptops.

In addition, recharging lithium-vanadium batteries could be faster than batteries currently used in EVs and computers. Other promising advanced next-gen battery types with varying degrees of research and development, and at different levels of marketability, include various types of flow batteries.


Flow Batteries

 

Flow batteries, such as vanadium flow and zinc-iron redox flow, have a longer battery life than conventional li-ion batteries. Flow batteries have a battery life of over 20 years, quickly charge and discharge, and easily scale up from under 1 MW to over 10 MW.

Vanadium flow batteries represent high-capacity energy storage, can be idle when solar and wind aren’t producing, and then discharge instantly. They have the unique ability to charge and discharge simultaneously and to release large amounts of electricity quickly.

As they are inexpensive to scale up, vanadium flow batteries represent an opportunity for reliable, affordable large-scale energy storage. At this point, many types of flow batteries are still in the R&D phase due to the expense of manufacturing these batteries; with only limited commercial availability.

However, commercial deployment of flow batteries is seen in some areas worldwide today, including some large markets - such as Australia and Asia.

Air batteries - Unlike vanadium flow batteries, which currently represent a great, realistic battery alternative, lithium-air batteries only theoretically represent a great battery alternative. Lithium-air batteries could triple the range of EVs, and could give fully charged EVs the same range as maximum-range gasoline cars with a full tank.

However, whereas vanadium flow batteries can charge and discharge repetitively with no problem, it has been notoriously difficult to manufacture rechargeable varieties of lithium-air batteries.



New batteries are currently being manufactured with:

- li-ion + cobalt, li-ion + phosphate, li-ion + manganese, and li-ion + silicon [and additionally, elements such as sodium and graphene]

- combining 3 of the above elements, along with nickel - for lithium nickel manganese cobalt oxide (or NMCs as these batteries are known)

- batteries based on vanadium, zinc, sodium, or even graphene

- advanced R&D is being done on "superconductors", flow batteries, solid-state batteries, and various metal or air-flow type batteries. Additionally, there are emerging experimental combinations such as lithium-sulfur, lithium-nickel-manganese-cobalt, sodium-ion batteries, graphene-based batteries, and lithium-titanate oxide



New advanced next-gen batteries are quickly gaining ground both in terms of R&D, as well as deployment. Advancements in next-gen batteries will help add renewable energy storage to the grid, add charging capacity to our cell phones and laptops, and help extend the range of electric cars to compete with gasoline ones.



Battery Recycling

 

The next step in ensuring that future generations of li-ion batteries are a sustainable solution is a concerted effort by battery manufacturers to develop batteries with future recycling and 2nd-life battery options built into the battery design.

Here's a snippet from C&EN about the importance of having future recycling requirements in mind as a priority for battery manufacturers:

"Lithium-ion batteries have made portable electronics ubiquitous, and they are about to do the same for electric vehicles. That success story is setting the world on track to generate a multimillion-metric-ton heap of used Li-ion batteries that could end up in the trash. The batteries are valuable and recyclable, but because of technical, economic, and other factors, less than 5% are recycled today.

The enormousness of the impending spent-battery situation is driving researchers to search for cost-effective, environmentally sustainable strategies for dealing with the vast stockpile of Li-ion batteries looming on the horizon."   

[QUOTE FROM  -  cen.acs.org/materials/energy-storage/time-serious-recycling-lithium]


and from Greentech Media on 2nd-life batteries:

"Batteries still have a lot of life in them after being swapped out of EVs. Why not use them on the grid? Reused or “second-life” lithium-ion batteries still have a lot of juice left in them, but so far the concept of using these batteries in stationary applications has yet to gain real market traction. New research, growing automotive industry interest and an expanding startup ecosystem suggest that that could now finally be changing."

[QUOTE FROM  -  greentechmedia.com/car-makers-and-startups-get-serious-about-reusing-batteries]


Cobalt Controversy

 

One glaring issue with li-ion batteries is the lack of sustainability in sourcing the critical rare earth metals used in li-ion batteries. Especially problematic is cobalt sourced from Congo (cobalt is frequently found in li-ion batteries in EVs, mobile phones, laptop computers, and other electronic products).

Cobalt sourced from Congo (which supplies roughly 2/3 of the world's cobalt), and then used in li-ion cobalt oxide batteries (as well as other batteries - for issues such as battery durability and the like) are unsustainably and unethically sourced.

Cobalt from Congo is the product of cobalt mining rife with human rights abuses (child labor, labor for insufficient wages, labor in hazardous, unregulated conditions), unmitigated environmental and social injustices, and other unsustainable practices.

Cobalt is found in many varieties of li-ion batteries, in nickel-based batteries, and in other batteries that use a combination of metals and elements. However, there are batteries with no cobalt or other unsustainable rare earth metals (such as those promising emerging advanced battery types mentioned above in this article).

There are manufacturers producing li-ion cobalt-free batteries, as well as many battery manufacturers committed to using cobalt that is not sourced from Congo; but rather from other parts of the world that do not have human rights abuses in cobalt mining.

"Since child and slave labor have been repeatedly reported in cobalt mining, primarily in the artisanal mines of DR Congo, technology companies seeking an ethical supply chain have faced shortages of this raw material and the price of cobalt metal reached a nine-year high in October 2017, more than US$30 a pound, versus US$10 in late 2015.

After oversupply, the price dropped to a more normal $15 in 2019. As a reaction to the issues with artisanal cobalt mining in DR Congo a number of cobalt suppliers and their customers have formed the Fair Cobalt Alliance (FCA) which aims to end the use of child labor and to improve the working conditions of cobalt mining and processing in the DR Congo.

Members of another ethical cobalt mining organization, the Responsible Cobalt Initiative, include FairphoneGlencore, and Tesla, Inc. Research is being conducted by the European Union on the possibility to eliminate cobalt requirements in lithium-ion battery production.

As of August 2020 battery makers have gradually reduced the cathode cobalt content from 1/3, to 2/10, to currently 1/10, and have also introduced the cobalt free LFP cathode into the battery packs of electric cars such as the Tesla Model 3. In September 2020, Tesla outlined their plans to make their own, cobalt-free battery cells."

[QUOTE FROM   -  wikipedia.org/wiki/Cobalt#Batteries]



Please also see:

Renewable Energy Storage



More articles

LEAVE A REPLY

Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Clean Energy

Future Generations of Batteries