Featured post

Top 5 greenest cities in the world

Visit http://www.greencitytimes.com for more on:

A Canadian city that is striving to be the greenest city on earth, consistently ranking as one of the most livable cities on the planet…

A European city that averages between 2-5 inches of rainfall each month, has rain year-round and temperatures between 30-50° F for at least half of the year, however is still considered Europe’s “solar city”….

An American city that leads the nation in recycling, and is planning on having a 75% recycling rate for all of the city’s reusable waste by 2015…

The city whose metropolitan population is among the largest in the world, yet still maintains almost 40% of its area as either green space or water (a sustainable metropolis)

A couple of European cities that make use of their tremendous natural resources to provide a supply of renewable energy for most of their heating and electricity demands. This energy is sourced from the natural environments of: volcanoesgeysers and forest

A South American city that serves as one of the world’s premier examples of urban planning and boasts the finest bus system in the world….

Featured post
Vauban's solar ship

Europe’s greenest city district

Vauban, Germany is a sustainable town for every other city in the world to emulate. Vauban is a “zero-emission” district in Freiburg, Germany.

The town is not completely carbon neutral, as cars are actually allowed, if you pay at least $23,000 USD for a parking spot on the outskirts of town. Thus, the majority of residents don’t own a car, choosing instead to use the tram, cycle or simply walk. Most streets don’t even have parking spaces.

The radical culture of Vauban has roots in its dramatic history. Ironically, Vauban was a military town through WWII and into the early 90’s. When the military left, the vacant buildings were inhabited by squatters. These vagabonds eventually organized Forum Vauban, organizing a revolutionary eco-community. Today, Vauban is modern, beautiful and represents the very cutting edge of sustainable living.

Careful urban planning helped to create a city layout which lends itself to cycling as the primary mode of transit. The terms “filtered permeability” and ”fused grid” refer to a plan that ultimately means connected streets throughout the town, as well as plenty of pedestrian and bike paths. Residents primarily live in co-op buildings, such as the “solar ship”, a large area of co-op buildings that run strictly on renewable energy…

next-gen battery

advanced next-gen batteries for 2015 and the future

New battery chemistries that represent a higher energy capacity are being developed in li-ion batteries. Li-ion batteries that can double the capacity of current batteries, last up to 20 years and charge in minutes, often while cutting costs, are being introduced to the market. A few examples of such new technology are li-ion sulphur, li-ion metal, li-ion silicon, li-ion cobalt oxide, li-ion manganese oxide and li-ion phosphate. Batteries based on li-ion solid-state chemistries could revolutionize battery technology for electric vehicles, grid storage and much more.

Other advanced next-gen battery types have varying degrees of research, and are at different levels of marketability. Li-ion batteries remain the most prominent in today’s market. However, sodium-ion batteries represent a much cheaper, more abundant material that could produce a less expensive battery with similar performance to li-ion.

Vanadium flow batteries have high capacity storage, a long lifespan (up to 20 years), can be idle when solar and wind aren’t producing and then discharge instantly. They have the unique ability to charge and discharge simultaneously and to release large amounts of electricity quickly. As they are inexpensive to scale up, vanadium flow batteries represent an opportunity for reliable, affordable large-scale energy storage.

Lithium-vanadium phosphate batteries are a next generation battery solution which shows promise, as they can extend the range of electric cars to compete with gasoline ones. These batteries not only have greater power than batteries found in the latest electric vehicles (such as lithium-manganese oxide), but also greater safety than the batteries found in cell phones and laptops..In addition, recharging lithium-vanadium batteries is faster than batteries currently used in EV’s.

Unlike vanadium flow batteries, which currently supply a great battery alternative, lithium-air batteries mostly theoretically represent a great battery alternative. Lithium-air batteries could triple the range of electric cars and could give electric cars the same range as gasoline ones. However, whereas vanadium flow batteries can charge and discharge repetitively with no problem, lithium-air batteries have been notoriously difficult to re-charge.


New batteries are being made from everything from graphene & silicon, magnesium & zinc, sodium & aluminum, manganese & vanadium – all which show great promise. Advancements in next-gen batteries will help add renewable energy storage to the grid, get used in our cell phones and laptops, and help extend the range of electric cars to compete with gasoline ones.

Carbon tax is a levy on pollution

Carbon tax – a levy on pollution whose time has come

A carbon tax is a levy on pollution, for the relative cost to humanity of the use of fossil fuels. This cost cannot be tabulated in exact terms, for it’s the accumulated cost of the damage to the environment, human health, and related costs of the use of fossil fuels that can only be estimated. The carbon tax itself is a fee on the production and distribution of fossil fuels. The government sets a price per ton on carbon, then that translates into a tax on oil, natural gas or such things as the electric bill.

Businesses and utilities then have the incentive to reduce consumption, and/ or maintain the market price and absorb the cost of the tax, or pass the added fee on to individual consumers. Individuals would then have the incentive to reduce consumption, increase their energy efficiency habits or face a steeper cost for energy and gas.

The principle of mitigating negative externalities (such as the damage caused by fossil fuels), and having the relative costs of pollution paid for, is the primary purpose of the carbon tax. Who bears the ultimate burden of the tax is a hypothetical question that has a couple of answers. The businesses that produce and distribute fossil fuels should consider bearing the brunt of the tax. In practice, individuals pay more.

A carbon tax is enacted to lower greenhouse-gas emissions. Public transportation, energy efficiency products, and things like clean coal technology become great alternatives to traditional means. One other benefit of a carbon tax, besides the incentives to reduce consumption and increase energy efficiency, is the increased attractiveness of the cost of alternative energy, which is made closer to cost parity with fossil fuels.


Denmark, Finland, Germany, Ireland, Italy, the Netherlands, Norway, Slovenia, Sweden, Switzerland, and the UK have all successfully implemented a partial carbon tax on some goods and services, while not being able to implement a broad, universal carbon tax. Generally, reports of lower greenhouse-gas emissions follow the passage of a carbon tax. In addition, India and Australia, among many other countries, have also successfully enacted carbon tax policies. The province of British Columbia, in Canada, has reported drops of around 5% annually of greenhouse gas emissions due to its aggressive carbon tax policies. 

Home Energy Management (HEM)

Home Energy Management (HEM)

Home Energy Management (HEM) refers to technology that helps homeowners improve home energy efficiency while also giving them access to household products from tablets, smartphones and computers. HEM systems save people on energy consumption (thus money) and time. With the remote controlled access, one can control thermostats, lights, other appliances or home monitors via the internet.

HEM systems include smart thermostats, smart appliances that regulate energy consumption, smart outlets and smart plug strips that turn completely off when not in use. An increasingly common addition to HEM systems are home monitors, including ones that provide home security systems. However, the product that best exemplifies HEM is the programmable thermostat.

Of the smart thermostats, The Nest (the pioneer of this technology, introduced to the mass market in 2011), continues to be the most popular brand. The Nest makes it simple to change the temperature of your home from your computer, mobile device or tablet. Another popular and innovative smart product, the Ecobee3, is an example of a smart thermostat that offers an additional unique feature. With the Ecobee3, thermostats can be programmed to control the temperature in up to 32 rooms (with additional sensors). If the temperature in a multistory home varies from room to room due to a standard HVAC, the Ecobee3 offers a solution. These are two examples of user-friendly smart thermostats.

Another HEM product is the smart outlet. With the smart outlet, the power of any home appliance can be measured. Through a tablet, smartphone, or PC, the outlets can also be used to set schedules for lights or electronics. The schedules can be coordinated with the grid to have a reduction in energy consumption during peak energy production hours, if the utility offers such data. Smart appliances (like a smart washer/ dryer) can reduce their energy consumption during peak hours as well. In addition, the latest in HEM offerings is a complete home monitoring system with smart outlets, combined home alarm and security system and a a remote controlled thermostat.


Today, service providers other than utilities are at the forefront in the smart grid, in part due to HEM products. Companies that provide cable, internet and smart phone services are now adding energy monitoring, control and optimization services to their offerings, pushing utilities into a supporting role. Utilities and service providers are both experimenting with different approaches. The service provider is a promising alternative to utilities to extend the smart grid into more homes.

micro-grids: powering the future

Recent breakthroughs in solar photovoltaic (PV) technology

Recently, there have been dramatic breakthroughs in solar energy that will help further the mainstream use of photovoltaic (PV) technology, bringing solar closer to cost parity with fossil fuels as a viable energy source to power the grid. A key development that will enable the widespread use of solar is the production of cells using less expensive, and readily available materials. Silicon has traditionally been the preferred material for PV, however cadmium telluride, copper and selenium (among other materials) are now also used to produce PV cells. These materials are used to produce highly efficient, low cost cells.

Nano PV cells result in much more compact, thinner, more efficient solar units. Nano technologies in PV with from 4 to 7 times (or more) the efficiency of standard photovoltaic cells are in the R&D phase today, with limited commercial availability. There are nano and alternative material PV cells with substantially higher efficiency than the standard (double to triple the standard 12-15% efficiency) in use today. The solar arrays now being produced could be exponentially improved with the development, refinement and implementation of nano technology. 

In addition to advancements in traditional photovoltaic technology, there have been exponential advancements in the field of solar thermal energy. Instead of simply converting energy from the sun into electricity, with solar thermal technology, solar energy heats water, molten salt, or another working fluid, and then steam is used to drive generators. Solar thermal represents an advancement in solar energy with 4 to 5 times the power density of PV. However, reductions in the cost of this technology have been difficult to realize, preventing it from really taking off.

One commercially successful application of solar power is the solar powered water heater. Solar powered water heaters are mandatory in new construction in the entire country of Israel, and now, in the state of Hawaii. Some of the other applications of solar energy include power generation and heating even in remotely situated buildings, in industrial buildings, schools, hospitals, etc…

Both types of solar energy (PV and solar thermal) will continue to steadily lessen in cost as technological advancements are made. However, photovoltaic is projected to remain ahead of thermal in terms of cost of production and utilization. Solar thermal does have a couple of advantages which compensate for the higher cost. Solar thermal energy is produced consistently throughout the day, not relying on weather conditions. relatedThe turbine will run on natural gas if there is no sun for an extended period of time. Solar thermal units fit easily with power storage systems and will continue to produce energy at night, using energy harnessed during the day.


The most promising new technologies in the world of solar power are CSP and HCPV…

 Please see: http://www.greencitytimes.com/Renewable-Energy/solar.html for the whole article.


Related links on solar energy:






First NZE home in CA

The Cottle Zero Energy Home (1st ZNE home in CA)

All over the world, a higher level of emphasis is being placed on environmental sustainability as evidenced by the increase in efforts towards energy efficiency and green building. Countries are in constant search of new technologies with the promise of reducing carbon footprint and optimizing the use of available energy without causing harm to the environment. The state of California is one of a few places that is achieving this goal. This is best represented through their ambitious goal of making all new homes zero net energy by the year 2020. Some might think that this is too big of an endeavor, but the state is slowly making the necessary steps to finally show the world that this is possible.

The Cottle Home

As part of commencing the efforts towards zero net energy, One Sky Homes has introduced The Cottle Zero Energy Home, which is the very first of its kind and has been lauded by the California Energy Commission. For those who would like to experience what it is like to be living in such a place, it may not be an easy feat as it comes with a hefty price tag of $2.2 million. More than the luxurious build of the home, obviously, its biggest selling point is its efficient use of energy. Generally speaking, one house in California will most likely consume energy worth over $100 monthly. On the other hand, with The Cottle (in San Jose, CA), the energy consumption is $15 (or usually less, due to standard utility connection fees) monthly.

The Mandate for a Greener Future


The inception of the Cottle Home was part of the idea of transforming the entire state into a greener place and it serves as an example for other states to have similar initiatives. California has recently mandated that all new home construction must be zero net energy (ZNE) by 2020. All new commercial buildings in the state must be ZNE by 2030


US LEED and LEED 2009 BD+C ACP’s

LEED certified buildings exist to save money and other resources. LEED certified houses give the occupants better health and wellness while being able to promote renewable and clean energy. LEED (Leadership in Energy and Environmental Design) is one of the best green building certification programs in the world right now.

Until recently, some of these features have only been LEED certified in certain countries. However, with recent developments, LEED has begun to spread these certifications to other countries, such as Europe. Many people in Europe want to change the way houses are built, and new developments have taken root and made these programs possible in Europe. This means that more people will have access to the amazing LEED program and reap the benefits for years to come.

Features of LEED

LEED homes and buildings are sustainable and provide people with an environment that is healthy, and that will save energy at the same time. When you get a LEED built house, you are quite literally getting the best of the best. Some of the basic features of a LEED building are:

indoor air quality

- well insulated and air sealed buildings

daylight & views, daylighting up to 75% of spaces

- this provides some of the heat for the building and overall well-being for the people inside

construction waste management and use of renewable or recycled materials
energy efficient lighting

optimize energy performance


water efficiency and storm water management

Rating System

Each project that LEED does has different prerequisites and aspects to rate. LEED has many different rating levels, here are a few:

“BD+C” means building design and construction. This deals with new constructions or major renovations that will dramatically change the existing structure. “ID+C” means interior design and construction, which deals with projects that make changes the interior.

The “O+M” rating deals with operations and maintenance, which only applies to buildings that already exist. There is only improvement work and little to no construction involved. LEED can also give a building a “ND”, which is neighborhood development. This deals with more than one building or home.

LEED BD+C 2009 ACPs Europe

In February of 2014, the USGBC hired the Sweden Green Building Council, and members of the LEED International Roundtable came together to introduce a special, Europe-specific program for the LEED BD+C. This is called the Alternative Compliance Paths (ACPs), and it will make a lot of things that were not possible before possible in Europe.


For the whole article, please see: http://www.greencitytimes.com/Sustainability-News/us-leed-and-leed-2009-bd-c-acp-s.html


Other recent articles on LEED:




micro-grids: powering the future

Micro-grids spread across Africa

Communities in developing countries (such as India and countries in Africa), especially those in remote locations, benefit from the deployment of micro-grids. As African nations push for rural electrification, they look to micro-grids as a solution to the problem. Micro-grids that use renewable energy are more cost effective and safer compared to diesel generators and kerosene, that are widely used in Africa today. Kerosene often uses up to 20% of an average African’s income, can cause fires, and unhealthy air quality.

A medium-sized solar power system with battery storage, on other hand,  can be easily used by over 50 households, an entire village, in many rural locations in Africa. Smaller, individual units, can power single, or a few, households. The power can be used for lighting, cell phone charging, cooking, etc…

Micro-grids are important for remote communities in Africa. Electrification of rural villages has been made possible through them. Power needed for water pumping, and purification, is done with the help of various micro-grids in Africa and other parts of the world. Mobile communication has a wider reach in the continent through telecom towers that are powered with micro-grids.

Micro-grids are cheaper than building power lines into forests and mountains, especially in the most remote locations in Africa. Poor communities in other third world countries will also benefit from having micro-grids installed, especially when the utility grids don’t want to build long power lines to connect them to the grid.

Many African rural communities have already built micro-grids as their energy source. Every time a new installation is made, the skill base of the locals is developed. Their infrastructure is improved as well. However, despite the recent momentum of micro-grids, one of the reasons there are not enough micro-grids in Africa is because of the prohibitive cost and lack of reasonable financing. Policy is needed to ensure that they are more affordable to the poor, remote villages in the continent.


Please see: http://www.greencitytimes.com/Sustainability-News/micro-grids-powering-the-future.html for the whole article.


Other recent articles on micro-grids in Africa:



2014 smart grids

Improving energy efficiency

When it comes to saving on your electricity bill, improving the energy efficiency of your home is certainly the way to do it. However, there are two ways of achieving this through the various kinds of HVAC systems that are available.

One kind of system is known as the residential demand response (DR) program, and is sometimes a part of today’s smart grid. Although we just use the example of HVAC here, DR can be applied to many home electrical systems and appliances. Residential demand response is where utility companies are given control over the HVAC units that are in people’s homes, and reduce the power settings and temperature of the home during the afternoon and early evening hours, as there is less need for them when people are at home. This is partly because the presence of people within buildings adds to the warmth of the home so that there is less need to use more electricity from the grid in order to turn the HVAC unit on. This can be very useful for those who don’t remember to turn down their thermostats at night, so it can help to save them a lot of money in the long run and increase the energy efficiency of their homes.

Alternatively, there is the behavioral demand response program, which leaves control in the hands of the homeowner. A smart device – a smart meter – is set up in the home, reads and records data from the home, such as the time people get home and wake up in the morning, and the changing temperatures throughout the year. This data is then used in order to tell consumers how much energy was saved and how this amount can be increased in the future by altering the settings of the thermostat and HVAC system. Communication is sent via a smart phone, PC, or tablet on how much energy they saved, what the financial benefit was and what customers can do better in the future. In response, customers can appropriately adjust their devices – “two-way communication”.

This smart meter method makes it much easier for the homeowner to determine how much energy to save, rather than leaving it in the hands of the utility companies. The use of the smart meter allows people access to the device from home, so changes can be made over one’s smartphone or tablet device.

Both methods are quite beneficial and make it easy for homeowners to focus on energy efficiency. With residential demand response program, even when the energy levels are lowered by the utility companies, the thermostat within the home is going to register the change in temperature and turn on at the appropriate time anyway. Depending on the season of the year, this can still lead to the overconsumption of energy that is not needed. With behavioral demand response programs, the smart meter has to be purchased and installed within the home, and only requires some time for it to record all of the data necessary in order to produce the best results that can be used to alter the thermostat. This does not necessarily make one system better than the other, but homeowners should be aware of the differences between the two in order to come to an informed decision.

Government Mandates for Cleaner Energy Production: The USA, Germany, and The EU

Over the last several years, climate change science has witnessed a complete overhaul in acceptance. Scientists were once attempting to explain the impact of fossil fuels and carbon dioxide on the planet to an unwilling public, and now climate change is largely regarded as not only a fact, but the potentially devastating catastrophe that it is. World governments are reacting to public urging with attempts to diminish the long term effects energy production has on the planet, all in an effort to curtail climate change and, hopefully, repair some of the damage already caused.

Many countries, including the US, Germany and the member states of the European Union, have turned to government mandates as first steps to battling climate change. In addition to helping reduce the carbon footprints of the countries adopting these mandates, the programs are also paving the way for other countries to implement renewable energy technology.

USA Climate Action Plan

First established in 2008 by President Barack Obama and members of his cabinet and staff, the USA’s Climate Action Plan is updated every two years to incorporate new ideas and goals as well as integrate new research. Essentially, the program is geared towards reducing carbon dioxide emissions, responsible foresting, increasing the study of and funding for climate change, and encouraging the use of alternative fuel sources.

The plan aims to leave US children a cleaner, healthier planet and diminish the already-apparent effects of climate change, such as increased allergies and extreme weather, including dangerous heat waves, chilling winter temps and severe flooding. Plan directives include empowering the Environmental Protection Agency (EPA) to work with new and existing power plants to cut carbon pollution, setting aside $8 billion in loan funds for advanced fossil energy and efficiency projects, and setting benchmarks for renewable energy projects; by 2020, the plan allows for 6 million US homes to receive power from wind and solar energy and improve energy efficiency in all homes by 20-percent. The plan also includes a goal to reduce carbon pollution by at least 3 billion metric tons by 2030, essentially cutting the US energy sector’s pollution levels in half.

Germany Renewable Energy Act

The starting point for Germany’s exceptional advances in renewable energy projects, the German Renewable Energy Act was instigated in 2000, and has had a dramatic impact on the amount of carbon pollution emitted by the country’s private and commercial sectors.

The Act was founded by the then German Federal Minister of the Environment Klaus Topfer as well as other high-level German politicians and leaders in private and commercial companies. So far, the plan has increased Germany’s electricity production from only 10% being generated by renewable sources in 2012 to 28% in 2014. The Act has also created 268,000 jobs in the renewable energy sector. As a whole, this government mandate works to protect investment into renewable energy through guaranteed feed-in tariffs and connection requirements, creating a strong incentive for residential and commercial properties to invest in renewable energy sources. In a similar vein, the Act also provides a deterrent to overuse of electricity, creating an EEG rate that goes up with the more electricity consumed.

All in all, the dramatic success of Germany’s program has made the Act a source of inspiration for similar programs around the world.

European Union Renewable Energy Directive

First published in 2009, this directive requires that at least 20-percent of the energy consumed in member states is from renewable sources by 2020. Despite the union-wide 20-percent goal, each member state has a slightly different percentage goal to reach by 2020. For example, Belgium is only expected to hit 13-percent, Greece 18-percent and Poland 15-percent. On the other hand, some member states are setting loftier goals, with France vying for 23-percent, Austria 34-percent and Sweden 49-percent. When combined, the expected average percentage of energy produced by renewable sources is set to meet or exceed the 20-percent benchmark.

Each member state is required to send regular progress reports detailing how they’re implementing new ideas and technologies to meet this directive, including how they’ve increased their use of the EU’s approved renewable energy sources, which include wind, solar, hydroelectric, geothermal energy, biomass and harnessing tidal power. At its core, the directive is aimed at reducing greenhouse emissions; however, it has the added benefit of encouraging innovation and increasing employment opportunities across Europe.

As of 2014, member states have made impressive progress towards the 2020 goal, with nearly 13-percent of member state energy production being created with wind, solar and other environmentally-friendly technologies.

Although the plans and directives being implemented by the United States, Germany and the European Union are fantastic first steps towards combating climate change, true success will only be had when all countries implement similar plans and vow to lower carbon dioxide emissions further after the initial goals are met.