The Block Island Wind Farm

The Block Island Wind Farm – America’s ONLY operational offshore wind farm

The Block Island Wind Farm, in Rhode Island, ACTUALLY WILL BE America’s 1st offshore wind farm when it is completed at the end of August 2016. The farm will be fully operational by November 2016, at which point it will be America’s ONLY operational offshore wind farm –http://www.fastcoexist.com/3062881/world-changing-ideas/americas-first-offshore-wind-farm-is-almost-ready

It will only be 30 MW. In comparison, the London Array offshore wind farm is 630 megawatts and powers “half a million UK homes every year, which works out to two-thirds of the homes in Kent”.(source:http://www.greencitytimes.com/Sustainability-News/london-array-paving-the-way-for-efficient-wind-energy-farms.html)

 

blockisle

Scotland recently powered most of their country with wind energy, along with countries like Germany, Denmark, and Ireland (and much of that is offshore wind energy –http://www.ecowatch.com/5-countries-leading-the-way-toward-100-renewable-energy-1881999459.html)

Americans who discount offshore wind energy (or wind energy in general), in favor of an energy mix including clean energy and dirty fossil fuels, might want to consider this energy source as a higher priority. What do you think?

solar concentrating plant

The largest solar concentrating plant in the world

Jointly owned by NRG Energy, Google, and BrightSource Energy, the Ivanpah Solar Electric Generating System (ISEGS) sprawls across the California and Nevada border in the Mojave Desert. Ivanpah is a “hybrid solar plant”, relying on both solar power and power from natural gas. Ivanpah began operations in 2014 is still considered the largest solar concentrating plant (CSP) in the world, with facilities that stretch over 3,500 acres. This 377 to 400 megawatt solar complex is revolutionizing the solar energy industry, proving that large scale renewable energy projects are not only possible, but can both thrive and surpass expectations.

With a complex including three CSP plants, ISEGS produces enough clean, renewable electricity to power 140,000 homes during peak hours, and almost double that amount during off peak hours. In fact, ISEGS produces double the amount of commercial solar thermal energy than any other plant in the United States.

ISEGS officially broke ground on October 27, 2010 and opened for business in February of 2014. Despite being one large complex, the project was actually broken down into three separate plants, each with their own 400-plus foot tower affixed with water filled receivers / boilers. The specific technology used is known as Luz Power Tower 550, which was developed by BrightSource Energy with the goal of creating a unique take on traditional energy generation that harnessed and increased the power of the sun.

Ivanpah covers 3,500 acres, and each plant relies on solar receivers filled with water nestled atop the towers (as well as natural gas). By using 300,000 mirrors, known as heliostats, to increase the sun’s energy and reflect the light directly onto the solar receivers at strategic angles, the water in the receivers is heated to such high temperatures that it dissolves into steam. From here, the steam is then piped into a conventional turbine to generate electricity, which feeds into the power lines connected to the adjacent communities.

This large scale renewable energy project eliminates 450,000 tons of carbon dioxide emissions every year, the equivalent to removing 70,000 cars from the road. Between the opening in 2014 and 2044, investors believe that the ISEGS will prevent 13.5 million tons of carbon dioxide from entering the atmosphere. And because the complex uses dry cooling to condense the steam, it consumes significantly less water than similar steam-powered plants. However, when it’s cloudy, or the sunshine is otherwise not readily available, the plant is able to run on natural gas, as well as the stored thermal energy from the solar concentrating power system.

Awarded Plant of the Year by POWER Magazine in 2014, the Ivanpah complex is proof that large-scale renewable energy projects are not only possible, but efficient as well. This massive complex was constructed in just 4 years, added jobs and funds to a somewhat dwindling economy, and is already dramatically reducing the amount of carbon emissions pumped into the atmosphere.

donald trump's ireland golf course

Trump’s push for a seawall on his Irish golf course – due to CLIMATE CHANGE

Trump International Golf Links & Hotel Ireland, in County Clare, home of Doonbeg Golf Links course, a course Trump owns in Ireland. [ABOVE]

Donald Trump wants to build a seawall to protect one of his golf courses (in Ireland) due to, of all things, the rising sea levels that will undoubtedly result from climate change. He is a huge climate change denier, but global warming will cause rising sea levels and an increase in extreme weather events that will, in all certainty, threaten his ocean-front golf course in Ireland -(http://time.com/4345367/donald-trump-climate-change-golf-course/).

 Yet, global warming is a “hoax”? Hmmm, how does THAT work?

 Donald Trump and his campaign is entirely reactive and then pandering. Of course global warming is a hoax because many of his voters believe it’s a hoax. But his rhetoric is more like a bad tick. Many of his voters are xenophobic, or even outright bigots (sorry to those Donald Trump supporters who are sincerely what you would call good people) – (https://www.washingtonpost.com/news/wonk/wp/2016/06/06/racial-anxiety-is-a-huge-driver-of-support-for-donald-trump-two-new-studies-find).

If he and his campaign feel that his supporters will like a speech that day around anti-immigration, or “closing off the borders”, that’s what they will do. If his completely ignorant views on climate change seem like good fodder for his supporters, that day, that will be included in the day’s speech. Facts notwithstanding.

 Facts are not apparently important to Trump or Trump’s campaign. Money is. Power is. The truth behind Trump’s motive to try and defund climate initiatives and play ignorant to climate science is that, that is what his voters want to hear. Science, facts and even common sense play no role in Trump’s rhetoric. He plays off people’s ignorance, gullibility and fear – entirely.

world-water-day-polluted-drinking-water-a-serious-threat-to-public-health

6 ways to aid the world water crisis

How important is clean drinking and potable water for household use? 1/3 of the world’s population doesn’t have access to clean drinking water. The water used for cooking, cleaning and bathing must also be clean, as many diseases (especially in developing countries) are water-borne diseases, from bacteria or other microorganisms in unclean water (see: http://globalhydration.com/resources/waterbone-disease). In fact, over 10% of the world’s population doesn’t even have access to clean potable water. Meanwhile, over 70% of the earth is covered in water.

water nano-water filter

1(a). The most immediate way to help the world water crisis is to provide filters to people who lack clean water, primarily to the 3rd world and low-income people of the world. This takes relief funds, both established by governments and private charities. There are many promising and emerging water purification technologies such as LifeStraw. “LifeStraw technology was originally introduced in 2005 as an emergency response tool to filter water…” (http://lifestraw.com)

(more clean water technologies are described here)- http://www.cleverism.com/water-purification-new-technologies-change-world/

Established, available filter technologies also range from: activated charcoal (or other carbon-based materials) to new nanotechnologies which use materials such as graphene, silver and titanium which are made into microscopic filtration membranes. There are a variety of very promising uses of graphene in newly designed and developed filters -(https://agenda.weforum.org/2015/07/can-graphene-make-the-worlds-water-clean/).

More media on nanotechnologies (including graphene materials used in combination with other nanomaterials):

Another great example of the use of graphene in water filters and water systems comes from the company G2O: http://g2o.co/

“G2O’s graphene filter technology addressing a $2Bn market and reducing energy costs by up to 97%. In addition to use in filter technologies, this company sees applications for its graphene technology in:

  • Environmental maritime applications in aquaculture and oil & gas production
  • Drain water and waste water management
  • Desalination of seawater”

1(b). Develop more water treatment (storm water, river/ stream/ lake water, industrial use water, sewage) plants (http://www.waterworld.com/waste-water/treatment.html)

clean_waterdrop_Fotolia2. Improve and create new rainwater collection systems such as the ones found here: http://www.rainharvest.com/

3. Water reclamation:

desalination

4. Develop more desalination plants…(please check the desalination article on our website: desalination-clean-water-for-a-thirsty-world and also http://www.theguardian.com/technology/2015/may/27/desalination-quest-quench-worlds-thirst-water

5. Improve water infrastructure (reservoirs, aqueducts, piping networks…) and 6. Utilities (especially in 3rd world countries) to further develop the use of micro-payments via mobile/ smart phones (also great for solar electricity, in addition to water)

world energy mix

Shortfall in International GHG Pledges

There is a shortfall between the pledges that the nearly 200 countries independently, and internationally as a whole, have made at the COP 21 in Paris last November, compared to the reality of what the planet has in its future. There is also a genuine effort to limit global temperature rise to 2 degree celsius average global temperature increase above the normal numbers (using historical numbers as a baseline for comparison) by the end of this century – the number that represents saving the planet from the worst effects of climate change.

In order to prevent the most damaging effects of climate change, the international community has pledged, in Paris, to increase the use of such sustainability technologies as renewable energy and energy efficiency measures, while decreasing fossil fuel use, in order to mitigate GHG (greenhouse gas) emissions…emissions which lead to global temperature rise. The idea is to keep global temperature rise to under 2 degrees celsius above normal (compared to historical values) by the end of this century.

scoreboard banner: result of international climate change action

The reality is that the average global temperature rise will be significantly greater than what was promised at Paris. A 5-8+ degrees fahrenheit rise in average temperature would result if the world simply maintains the status quo. The pledges in Paris, as well as actions by nations and private investors before and after COP21, demonstrate a genuine global effort in the research, development and effective use of sustainable technologies and measures. Of course, this is great, but global temperature rise still will be over the global temperature goals committed to in Paris.

In other words, at least 2+ degrees celsius change over the acceptable 2 degrees limit by the end of this century will result, even if all pledges by all countries are actually met. Even in this positive scenario (and the best-case scenario discribed below), as of now, there is still a shortfall – this NYTimes infographic clearly illustrates this problem — http://tinyurl.com/gct333

If all nearly 200 nations keep all of their promises from COP21, temperature rise will be limited to just 0.035°C (0.063°F) annually (best case). Even if every government on the planet that participated not only keeps every Paris promise, reduces all emissions as promised by 2030 (2030 was the year of note discussed in Paris), and shifts no emissions to other countries, but also keeps these emission reductions going throughout the rest of the century, temperature rise will be kept to just 3°C (5.4°F) by the year 2100.

Obama’s Clean Power Plan, his moratorium on drilling for oil in the Atlantic, the U.S.’s 3 year moratorium on building coal mines on federal land, China’s 3 year ban on building new coal mines, and their shutting down of thousands of older coal power plants are all very positive signs. Other promising signs include the U.S.’s increased development and use of renewable energy and energy efficiency technologies (as well as in China, India and much of the developing world). Europe has been leading the way for many years, in many respects, in terms of sustainability technologies. However, optimism, in the face of the undeniable math of climate change which clearly tells us more needs to be done, should be weighed carefully against climate change realities.

Green City Times is a resource on sustainability, urban planning, renewable energy, sustainable mass transportation, energy efficiency and green building. Find facts on renewable energy including: hydroelectric (from dams, mills, waves, currents and tides), solar, wind, geothermal, biomass (and biofuel). Also get info. about everything from recycling to clean coal…

You will discover information on 7 of the world’s most sustainable cities. Green City Times also features articles on the latest sustainability technology. Please feel free to contact us with any questions or comments.

Facebook: https://www.facebook.com/GCityTimes
Twitter: https:[email protected]

http://www.greencitytimes.com

For more on Green City Times, please see: https://about.me/gctimes

desalination

World water crisis solutions: desalination

Desalination

The two desalination plants featured in this article, one in San Diego, California, and one in Tel Aviv, Israel, represent the two largest of these plants in the world. Desalination represents a part of the solution to the world water crisis, along with wastewater treatment, and distributing water filters to the poor, especially in 3rd world areas. Worldwide, only 1 in 9 people have access to clean drinking water, Although Carlsbad and Tel Aviv don’t represent the struggles with water scarcity in the third world, they do represent solutions to the growing need for clean water in the world, as a whole. Both plants use a technology called reverse osmosis as part of the process.

http://www.citylab.com/tech/2015/12/a-look-inside-the-largest-desalination-plant-in-the-western-hemisphere/420501/

The largest ocean desalination plant in the Western Hemisphere is open in Carlsbad, San Diego, heralding what may be a new era in U.S. water use.

http://www.technologyreview.com/featuredstory/533446/desalination-out-of-desperation/

Global desalination output has tripled since 2000: 16,000 plants are up and running around the world, and the pace of construction is expected to increase while the technology continues to improve. Desalination is ripe for technological improvement. A combination of sensor-driven optimization and automation, energy-efficient technology that is said to nearly halve energy consumptionplus new types of membranes, could eventually allow for desalination plants that are half the size and use commensurately less energy. Among other benefits, small, mobile desalination units could be used in agricultural regions hundreds of miles away from the ocean, where demand for water is great and growing. Already, some 700 million people worldwide suffer from water scarcity, but that number is expected to swell to 1.8 billion in just 10 years. Some countries, like Israel, already rely heavily on desalination; more will follow suit.

http://www.technologyreview.com/featuredstory/534996/megascale-desalination/

10 miles south of Tel Aviv, Israel, a vast new industrial facility hums around the clock. It is the world’s largest (larger than the Carlsbad plant) modern seawater desalination plant, providing 20 percent of the water consumed by the country’s households. Thanks to a series of engineering and materials advances, however, it produces clean water from the sea cheaply and at a scale never before achieved, demonstrating that seawater desalination can cost-effectively provide a substantial portion of a nation’s water supply.

cop21

COP21 – good news for the planet

 On the 12th of December, 2015, high-level representatives from 195 nations, including many presidents and prime ministers, agreed to try to hold warming “well below” 2 °C above pre-industrial temperatures. On April 22, at the UN in NYC, the agreement takes full effect (once nations representing a majority of the planet’s GHG emissions sign the agreement). Unfortunately, the truth is that, even if the agreement in Paris is carried out by every nation, and to the letter, global temperatures will still be on course to rise by around 2.7°C by the end of the century.

Luckily, the best news of the entire COP21 came on Day 1 with the announcement of the Breakthrough Energy Coalition (breakthroughenergycoalition.com). The Breakthrough Energy Coalition is a group of more than 20 billionaires (including Bill Gates and Mark Zuckerberg {CEO of Facebook}) who have agreed to invest in innovative clean energy. The Coalition wouldn’t be able to fund and meet all of its goals without the most important international commitment by governments to invest in clean energy to date. Mission Innovation (mission-innovation.net) is a group of 20 countries including the U.S., Brazil, China, Japan, Germany, France, Saudi Arabia and South Korea, who have pledged to double government investment in clean energy innovation and to be transparent about its clean energy research and development efforts. In a statement from the Coalition, the importance of both groups is highlighted –

“THE WORLD NEEDS WIDELY AVAILABLE ENERGY that is reliable, affordable and does not produce carbon. The only way to accomplish that goal is by developing new tools to power the world. That innovation will result from a dramatically scaled up public research pipeline linked to truly patient, flexible investments committed to developing the technologies that will create a new energy mix. The Breakthrough Energy Coalition is working together with a growing group of visionary countries who are significantly increasing their public research pipeline through the Mission Innovation initiative to make that future a reality.”

Brazil was one of the last countries to join the ‘high ambition coalition’, while China and India were hold outs to this section of the pact. The ‘high ambition coalition’ are a group of countries, including most of the “Mission Innovation” countries and a group of the most vulnerable (smaller generally, and poorer) nations, that are looking towards a more ambitious goal of limiting global temperature rise to 1.5°C. China and India are the major emitters in the developing world, and were the last agree to the main pact, but not the high ambition goal, at COP21.

Below are some major resources for more information on the COP21:

 

COP21 Paris – breakdown of the event

coal plant

Stabilize greenhouse gasses

There are numerous ways that we can stabilize greenhouse gasses, thereby “stopping” climate change. Governments of 1st world and even developing nations must implement some of the following policies (and most might, at least implement some of the following, especially after the upcoming COP meeting of the UNFCCC in Paris). Clearly, the path to stabilize GHG emissions includes making it a priority for governments to financially invest in at least some of these solutions:

 

1. A carbon tax, or carbon cap-and-trade system, or both

2. Further investment in, and development of all forms of renewable energy including: wind, solar, geothermal and biomass/biofuel etc…

3. Carbon capture and storage

4. Widespread adoption of hybrids, plug-in hybrids and electric vehicles, as well as sustainable mass transportation using biofuel or electricity (bus systems, light rail etc…)

5. More use of, and development of smart grid infrastructure – smart meters, home energy management systems etc…

6. Energy, especially renewable energy, storage

 

 

This is certainly an incomplete list, so please feel free to add points.

hybrid car charge

The benefits of hybrid cars

hybrid vehicle combines energy from a gasoline engine and an electric motor to increase efficiency. Hybrid automobiles increase MPG compared to standard vehicles (50+ for the vehicles addressed in this article), while lowering CO2 and other greenhouse gas emissions. The benefits of hybrid cars include financial savings even above and beyond the $5000-$6000 in savings on gas (over 5 years) that the cars in this article average. For example, hybrids help to avoid road tolls such as London’s congestion charge. Hybrids typically offer features with advantages over standard cars, such as regenerative braking, electric motor drive/ assist and automatic start/ shutoff.

Regenerative braking refers to energy produced from braking and coasting that’s normally wasted, which is stored in a battery until needed by the motor. During electric motor drive/ assist, the electric motor kicks into gear, providing additional torque for such things as hill climbing, passing or quickly accelerating.  For automatic start/ stop, energy is conserved while idling, as the engine is shut off when the vehicle comes to a stop, and is re-started when the accelerator is pressed.

Whereas a normal hybrid car simply combines an electric motor and a gas engine, a plug-in hybrid can run only on electric power, when charged, and can be recharged without using the gas engine. Plug-in hybrid electric vehicles (PHEV’s) have high capacity batteries, and charge by plugging into the grid, storing enough electricity to significantly reduce gas use.

There are two basic types of plug-in hybrids: extended range electric vehicles and blended plug-in hybrids. Extended range electric vehicles work by having only the electric motor turn the wheels, and can run only on electricity until the gasoline engine is needed to generate electricity to recharge the battery that powers the electric motor (or the gas engine can be eliminated entirely, on short rides). Blended plug-in hybrids work by still having both the gas engine and the electric motor connected to the wheels, both propelling the vehicle most of the time.

Electric vehicles (EV’s) drop the gas engine entirely, becoming much more environmentally friendly. The MPG goes way up, but the cost tends to go up as well, and the driving range goes down. These factors; the MPG, cost and range are tied to how efficient, how much capacity, the battery has. The higher the capacity of the battery, the higher the cost, MPG and range. Although EV’s emit no tailpipe pollutants, it remains important that the source for the energy from the grid that charges the vehicle’s battery remains green (i.e. renewable energy) as well.

Hybrid cars take numerous different forms, including the types mentioned above, and then compete against standard gas cars, flex-fuel vehicles, diesel vehicles, etc… European sales of standard hybrid vehicles have increased, but with roughly half the cars in the EU being more fuel efficient diesel engines, EV’s and plug-ins are the more popular choice. These cars can better compete in the global market, in terms of fuel efficiency.

The global hybrid market is still dominated by Toyota, in particular their Prius line, including the Prius Plug-in. The Prius remains California’s most popular car, as a testament to its global popularity. The Prius gets around 50 MPG, costs $25-30K and has a driving range of 540 miles on a full tank of gas. The plug-in model costs $30-35K and gets 95 MPG running on electricity only or 50 MPG running on both electricity and gas, with a driving range of about 600 miles.

The Tesla Model S and the Nissan Leaf are examples of successful electric vehicles. The Tesla Model S with a 60 kW-hr battery pack gets up to 102 MPG’s, costs around $70K and has a driving range of 208 miles on a fully charged battery. The Nissan Leaf costs $30-35K, can get 80 miles on a full charge and hits 128 MPG’s.

(*All figures are as of 2015.)

nuclear power plant

Nuclear – one necessary energy supply to fight climate change

Nuclear energy is necessary to fight climate change and decrease fossil fuel use. Wind and solar are often distributed energy sources which are always intermittent and variable. Nuclear, however, is continuously available and represents a much more concentrated source of energy than renewables, with a much higher production capacity. Both nuclear and renewable energy’s contribution to energy production on the planet must increase to a combined energy production level which is a little more than what coal alone currently provides.

In order to significantly cut down on the share of fossil fuels in the world energy mix, at least double the production of that which is illustrated in the chart above is needed by 2035. (A total of 40% of the world’s energy mix for renewable and nuclear energies combined is needed to reach significant GHG targets. Only 20+% of renewable and nuclear combined is projected in 20 years – by 2035).

In order for the entire planet to achieve at least 25% greenhouse gas (GHG) reduction by 2025 compared to 2015 levels (a reasonable, yet challenging, GHG reduction goal for the planet), nuclear energy is going to have to augment truly clean, renewable energy in the effort to dramatically reduce fossil fuel use. Once it’s at the operational stage, carbon dioxide emissions from a nuclear reactor and the power plant’s site are minimal. Other than reduction of emissions, nuclear offers, by far, the most energy dense resource available.

Fossil fuels are more energy dense than renewable energy sources, but 1 kg of coal can only keep a light bulb lit for a few days, while the same quantity of a nuclear energy source will keep the same bulb lit for well over 100 years. Nuclear does this without any CO2, or most other GHG, emissions from the nuclear plant.

Current reactors, 1st and 2nd generation plants, rely on water and uranium. Therefore, these nuclear plants still deplete water supplies, create nuclear waste, use a fuel source that can be enriched to convert the material into a bomb, and represent a source of potential danger, as in the Fukushima disaster (although this risk is dramatically minimized in a 3rd generation plant).

A safer, cheaper, and still energy abundant and emissions-free design that uses relatively benign energy sources and relatively much less water than previous designs and operational plants, is being envisioned in 4th generation nuclear, and is currently available in 3rd generation designs.

Using a small fraction of the water as previous designs, the 4th generation nuclear plant designs are safe, cost-effective, environmentally-friendly and still offer tremendous potential for energy production. Molten salt reactors using depleted uranium, nuclear waste from other plants, or thorium, are being designed as 4th generation nuclear plants. 4th generation designs (and many 3rd generation plants, both planned and operational) are autonomous, smart plants that are even being designed to run on different fuel sources.

Thorium, instead of uranium, is being looked at as a fuel source, as it is abundant, much less radioactive than uranium, and also creates by-products from burning the fuel source, that can just be used again in the reactor. Thorium reactors are being designed with low up-front capital costs, and little manpower is needed to run and maintain 4th generation plants, due to the advanced computer technology set to be deployed in the plants.

Thorium, and depleted uranium, have a very low chance of being developed into a nuclear weapons, produce less radioactive waste, are abundant fuel sources, and are safer, cheaper and cleaner.

Thorium, in particular, is being looked at by developing nations like China and India because of the relatively low cost, increased safety, abundance of the material, and tremendous energy potential of this energy source. The U.S. has huge amounts of thorium, in places like Kentucky and Idaho, and there are large quantities in countries like India, Australia and Brazil.

The U.S., Europe and even some of the aforementioned developing countries also have large stockpiles of depleted uranium, with more being produced every day, which would work in many of the 4th generation designs. 3rd generation nuclear plants are already operating, and some 4th generation plants are projected to be developed and ready for operation by 2025. 4th generation nuclear promises to produce abundant, low-cost energy safely, and with little environmental impact.