GLOBAL ACTION ON CLIMATE More Sustainability News

A vision for a modern 21st century sustainable world - on Green City Times

Green City Times



Gain insight into climate solutions such as: renewable energy, energy efficiency, sustainable mass transportation, urban planning, green building, electric (& hybrid) vehicles, smart grids, microgrids, carbon capture & sequestration (CCS); regenerative agriculture, as well as various other methods of sustainable ag, and reforestation. Current cutting-edge clean energy technology is examined, including the latest GCT featured articles on energy storage, next-gen batteries; and solutions to fossil fuels such as electric vehicles.


Sources of renewable energy are described in detail: solar PV & solar thermal, wind & offshore wind farms, biomass & biofuels, hydroelectricty, and geothermal energy. Also see our views on carbon pricing, feed-in tariffs, net metering & RPS; and a comprehensive public policy plan for climate action to achieve net zero emissions. Additionally, find featured GCT deep dives, such as - Renewable Energy Jobs are UP, and RE costs are down (an article on the fastest job growth sector globally - clean energy); and The RISE of SOLAR. While you will find articles on relatively simple technologies such as LED lighting, you can also discover articles on cutting-edge technological breakthroughs in solar and wind, next-gen batteries, and LEED buildings.


Along with featuring the world's GREENEST CITIES, GCT also features the latest global trends in sustainability. Gain insight into the latest global progress on climate goals made at the Paris Climate Accord. See Green City Times' 10+ point plan for successful climate change mitigation to reduce global greenhouse gas emissions (GHGs). Global temperature rise this century should be held to well below 2°C above pre-industrial levels; meaning the entire world needs to aim for a 50% reduction of GHGs this decade, and again the following decade, in order to put the planet on the path to carbon neutrality by 2050. The most significant, cost-efficient, technological climate mitigation pathways, readily available today at a large enough scale to be effective solutions to global warming immediately upon mass deployment (if implemented on a large enough scale globally - see GCT's 10+ Point Plan for Climate Mitigation); are renewable energy, energy storage, and energy efficiency.


Reducing global GHGs entails the global clean energy transition from a fossil fuel based economy to an economy based on renewable energy. However, a successful energy transition also involves other proactive clean energy measures; such as increased electrification and energy efficiency technologies for multiple sectors of the urban economy. The global energy transition requires cities to electrify everything - transportation, buildings; every urban economic sector.


Successful global climate action will be achieved - when electrification and decarbonization of ALL urban economic sectors is pursued as expeditiously as possible worldwide.


Green City Times details global low carbon energy transition pathways, as well as zero emissions energy strategies (such as mass global deployment of solar, wind, and energy storage technologies). Worldwide, many different low carbon pathways are needed, in addition to strategies to sequester carbon already in the planet's atmosphere, in order to achieve carbon neutrality (with the target of net zero emissions globally by 2050).

Clean energy technological solutions CAN bring the world to carbon neutrality (net zero) by 2050; before a global phase-out of carbon-intensive and environmentally polluting energy sources really takes hold in the latter half of this century. Greater investment in clean energy technologies is needed globally, both for currently implemented technological solutions, as well as for clean energy solutions in various stages of R&D.


In its World Energy Outlook, the International Energy Agency identifies pathways for clean energy technological solutions needed to reach global carbon neutrality (i.e. net zero GHG emissions) by 2050. It also details interim goals that will ensure the world is on the path to carbon neutrality.

A brief description of just 3 of those interim goals is: by 2030, low carbon sources need to generate 75% of the world's energy, up from 40%. Global electric vehicle sales need to increase from <3% of new vehicle sales to 50% by 2030. By 2030, in the developed, industrial world, 1/2 of all buildings need retrofitting to create energy efficient buildings that rely on clean energy and electricity for core functions (in the developing world, that number drops to 1/3 of all buildings need to be retrofitted with energy efficiency upgrades by 2030). Reaching these goals, among other challenging near-term global sustainability goals, is necessary to ensure that the planet remains well below 2°C global temperature rise above pre-industrial levels, a major goal of the Paris Climate Accord.


There must be global prioritization of generating energy with low emission energy technologies (on the path to net zero carbon emissions, energy sources need to be clean energy, not necessarily just 100% renewable energy in the near term - i.e. nuclear energy, natural gas combined cycle with CCS, and other low carbon sources of gas energy such as biogas, syngas from gasification, waste-to-energy, anaerobic digestion, etc...); as well as a global increase of carbon emissions-free energy sources, such as the two least expensive energy sources in the world today: solar and wind.

There must also be a global expansion of research and development of clean energy technologies as the world aims to achieve net zero. This means expanded global public-private investment in energy storage, electrifying transportation, in energy efficient buildings (both increased investment in meeting energy efficiency standards for new construction, and investment in retrofitting and weatherizing existing residential & commercial buildings with the latest energy efficiency technologies); and investment in other areas of innovation in sustainable energy technologies. Many of these technologies are readily available today, and represent practical options for the expansion of current sustainable urban development. A few examples of readily available advanced clean energy technologies include: next-generation batteries, cellulosic biofuels and other next-gen biofuels, such as algae.


Other readily available, cost-efficient, effective, technological solutions for a low carbon energy transition include: demand response, combined heat & power, gasification & waste-to-energy, anaerobic digestion, and CCS & IGCC. We also provide insight into the future of a current zero carbon emissions energy source - advanced nuclear - (optimistically) improved in the coming decades by Gen IV and small modular reactor technologies (Gen IV nuclear is still in R&D, and hopefully will be developed effectively, yet remains expensive at this point).

There must be global investment in every available, expedient, and viable, GHG mitigation measure; as well as increased investment in carbon removal measures. Although there are promising technologies for removing carbon from emission-intensive energy generation and from the atmosphere - such as carbon capture & sequestration for energy generation with carbon intensive fuels; as well as direct carbon capture - there are several readily available measures that represent the planet's best bets.

These readily available solutions include: developing and maintaining urban forestry & green urban spaces, recycling, conservation of wildlife including planting, growing, and conserving trees; reforestation (and stop deforestation), regenerative agriculture, agroforestry, carbon farming, and other forms of sustainable agriculture.

These sustainable measures represent immediate solutions of expanding natural carbon sinks needed to ensure a healthy planet. The most efficient "technological" climate solution in terms of sequestering atmospheric CO2, is the simple the ancient "technology" of planting trees - but on a large enough scale (trillions of trees globally), so that a substantial quantity of carbon is sequestered from the atmosphere - and together with all of the above sustainable pathways, leads to a healthy future planet.



how to get to net-zero