Monthly Archives: February 2015

micro-grids: powering the future

Recent breakthroughs in solar photovoltaic (PV) technology

Recently, there have been dramatic breakthroughs in solar energy that will help further the mainstream use of photovoltaic (PV) technology, bringing solar closer to cost parity with fossil fuels as a viable energy source to power the grid. A key development that will enable the widespread use of solar is the production of cells using less expensive, and readily available materials. Silicon has traditionally been the preferred material for PV, however cadmium telluride, copper and selenium (among other materials) are now also used to produce PV cells. These materials are used to produce highly efficient, low cost cells.

Nano PV cells result in much more compact, thinner, more efficient solar units. Nano technologies in PV with from 4 to 7 times (or more) the efficiency of standard photovoltaic cells are in the R&D phase today, with limited commercial availability. There are nano and alternative material PV cells with substantially higher efficiency than the standard (double to triple the standard 12-15% efficiency) in use today. The solar arrays now being produced could be exponentially improved with the development, refinement and implementation of nano technology. 

In addition to advancements in traditional photovoltaic technology, there have been exponential advancements in the field of solar thermal energy. Instead of simply converting energy from the sun into electricity, with solar thermal technology, solar energy heats water, molten salt, or another working fluid, and then steam is used to drive generators. Solar thermal represents an advancement in solar energy with 4 to 5 times the power density of PV. However, reductions in the cost of this technology have been difficult to realize, preventing it from really taking off.

One commercially successful application of solar power is the solar powered water heater. Solar powered water heaters are mandatory in new construction in the entire country of Israel, and now, in the state of Hawaii. Some of the other applications of solar energy include power generation and heating even in remotely situated buildings, in industrial buildings, schools, hospitals, etc…

Both types of solar energy (PV and solar thermal) will continue to steadily lessen in cost as technological advancements are made. However, photovoltaic is projected to remain ahead of thermal in terms of cost of production and utilization. Solar thermal does have a couple of advantages which compensate for the higher cost. Solar thermal energy is produced consistently throughout the day, not relying on weather conditions. relatedThe turbine will run on natural gas if there is no sun for an extended period of time. Solar thermal units fit easily with power storage systems and will continue to produce energy at night, using energy harnessed during the day.


The most promising new technologies in the world of solar power are CSP and HCPV…

 Please see: for the whole article.


Related links on solar energy:



First NZE home in CA

The Cottle Zero Energy Home (1st ZNE home in CA)

All over the world, a higher level of emphasis is being placed on environmental sustainability as evidenced by the increase in efforts towards energy efficiency and green building. Countries are in constant search of new technologies with the promise of reducing carbon footprint and optimizing the use of available energy without causing harm to the environment. The state of California is one of a few places that is achieving this goal. This is best represented through their ambitious goal of making all new homes zero net energy by the year 2020. Some might think that this is too big of an endeavor, but the state is slowly making the necessary steps to finally show the world that this is possible.

The Cottle Home

As part of commencing the efforts towards zero net energy, One Sky Homes has introduced The Cottle Zero Energy Home, which is the very first of its kind and has been lauded by the California Energy Commission. For those who would like to experience what it is like to be living in such a place, it may not be an easy feat as it comes with a hefty price tag of $2.2 million. More than the luxurious build of the home, obviously, its biggest selling point is its efficient use of energy. Generally speaking, one house in California will most likely consume energy worth over $100 monthly. On the other hand, with The Cottle (in San Jose, CA), the energy consumption is $15 (or usually less, due to standard utility connection fees) monthly.

The Mandate for a Greener Future


The inception of the Cottle Home was part of the idea of transforming the entire state into a greener place and it serves as an example for other states to have similar initiatives. California has recently mandated that all new home construction must be zero net energy (ZNE) by 2020. All new commercial buildings in the state must be ZNE by 2030


US LEED and LEED 2009 BD+C ACP’s

LEED certified buildings exist to save money and other resources. LEED certified houses give the occupants better health and wellness while being able to promote renewable and clean energy. LEED (Leadership in Energy and Environmental Design) is one of the best green building certification programs in the world right now.

Until recently, some of these features have only been LEED certified in certain countries. However, with recent developments, LEED has begun to spread these certifications to other countries, such as Europe. Many people in Europe want to change the way houses are built, and new developments have taken root and made these programs possible in Europe. This means that more people will have access to the amazing LEED program and reap the benefits for years to come.

Features of LEED

LEED homes and buildings are sustainable and provide people with an environment that is healthy, and that will save energy at the same time. When you get a LEED built house, you are quite literally getting the best of the best. Some of the basic features of a LEED building are:

indoor air quality

– well insulated and air sealed buildings

daylight & views, daylighting up to 75% of spaces

– this provides some of the heat for the building and overall well-being for the people inside

construction waste management and use of renewable or recycled materials
energy efficient lighting

optimize energy performance


water efficiency and storm water management

Rating System

Each project that LEED does has different prerequisites and aspects to rate. LEED has many different rating levels, here are a few:

“BD+C” means building design and construction. This deals with new constructions or major renovations that will dramatically change the existing structure. “ID+C” means interior design and construction, which deals with projects that make changes the interior.

The “O+M” rating deals with operations and maintenance, which only applies to buildings that already exist. There is only improvement work and little to no construction involved. LEED can also give a building a “ND”, which is neighborhood development. This deals with more than one building or home.

LEED BD+C 2009 ACPs Europe

In February of 2014, the USGBC hired the Sweden Green Building Council, and members of the LEED International Roundtable came together to introduce a special, Europe-specific program for the LEED BD+C. This is called the Alternative Compliance Paths (ACPs), and it will make a lot of things that were not possible before possible in Europe.


For the whole article, please see:


Other recent articles on LEED: